980 resultados para acquire immunology
Resumo:
Background: Perennial Ryegrass is a major cause of rhinitis in spring and early summer. Bahia grass, Paspalum notatum, flowers late into summer and could account for allergic rhinitis at this time. We determined the frequency of serum immunoglobulin (Ig)E reactivity with Bahia grass in Ryegrass pollen allergic patients and investigated IgE cross-reactivity between Bahia and Ryegrass. Methods: Serum from 33 Ryegrass pollen allergic patients and 12 nonatopic donors were tested for IgE reactivity with Bahia and Ryegrass pollen extracts (PE) by enzyme-linked immunosorbent assay (ELISA), western blotting and inhibition ELISA. Allergen-specific antibodies from a pool of sera from allergic donors were affinity purified and tested for IgE cross-reactivity. Results: Seventy-eight per cent of the sera had IgE reactivity with Bahia grass, but more weakly than with Ryegrass. Antibodies eluted from the major Ryegrass pollen allergens, Lol p 1 and Lol p 5, showed IgE reactivity with allergens of Ryegrass and Canary but not Bahia or Bermuda grasses. Timothy, Canary and Ryegrass inhibited IgE reactivity with Ryegrass and Bahia grass, whereas Bahia, Johnson and Bermuda grass did not inhibit IgE reactivity with Ryegrass. Conclusions: The majority of Ryegrass allergic patients also showed serum IgE reactivity with Bahia grass PE. However, Bahia grass and Ryegrass had only limited IgE cross-reactivity indicating that Bahia grass should be considered in diagnosis and treatment of patients with hay fever late in' the grass pollen season.
Resumo:
Two monoclonal antibodies (mAb) CB268 and CII-C1 to type II collagen (CII) react with precisely the same conformational epitope constituted by the residues ARGLT on the three chains of the CII triple helix. The antibodies share structural similarity, with most differences in the complementarity determining region 3 of the heavy chain (HCDR3). The fine reactivity of these mAbs was investigated by screening two nonameric phage-displayed random peptide libraries. For each mAb, there were phage clones (phagotopes) that reacted strongly by ELISA only with the selecting mAb, and inhibited binding to CII only for that mAb, not the alternate mAb. Nonetheless, a synthetic peptide RRLPFGSQM corresponding to an insert from a highly reactive CII-C1-selected phagotope, which was unreactive (and non-inhibitory) with CB268, inhibited the reactivity of CB268 with CII. Most phage-displayed peptides contained a motif in the first part of the molecule that consisted of two basic residues adjacent to at least one hydrophobic residue (e.g. RRL or LRR), but the second portion of the peptides differed for the two mAbs. We predict that conserved CDR sequences interact with the basic-basic-hydrophobic motif, whereas non-conserved amino acids in the binding sites (especially HCDR3) interact with unique peptide sequences and limit cross-reactivity. The observation that two mAbs can react identically with a single epitope on one antigen (CII), but show no cross-reactivity when tested against a second (phagotope) indicates that microorganisms could exhibit mimics capable of initiating autoimmunity without this being evident from conventional assays.
Resumo:
The major diabetes autoantigen, glutamic acid decarboxylase (GAD65), contains a region of sequence similarity, including six identical residues PEVKEK, to the P2C protein of coxsackie B virus, suggesting that cross-reactivity between coxsackie B virus and GAD65 can initiate autoimmune diabetes. We used the human islet cell mAbs MICA3 and MICA4 to identify the Ab epitopes of GAD65 by screening phage-displayed random peptide libraries. The identified peptide sequences could be mapped to a homology model of the pyridoxal phosphate (PLP) binding domain of GAD65. For MICA3, a surface loop containing the sequence PEVKEK and two adjacent exposed helixes were identified in the PLP binding domain as well as a region of the C terminus of GAD65 that has previously been identified as critical for MICA3 binding. To confirm that the loop containing tile PEVKEK sequence contributes to the MICA3 epitope, this loop was deleted by mutagenesis. This reduced binding of MICA3 by 70%. Peptide sequences selected using MICA4 were rich in basic or hydroxyl-containing amino acids, and the surface of the GAD65 PLP-binding domain surrounding Lys358, which is known to be critical for MICA4 binding, was likewise rich in these amino acids. Also, the two phage most reactive width MICA4 encoded the motif VALxG, and the reverse of this sequence, LAV, was located in this same region. Thus, we have defined the MICA3 and MICA4 epitopes on GAD65 using the combination of phage display, molecular modeling, and mutagenesis and have provided compelling evidence for the involvement of the PEVKEK loop in the MICA3 epitope.
Resumo:
The chemokine receptor CCR5 contains seven transmembrane-spanning domains. It binds chemokines and acts as co-receptor for macrophage (m)-tropic (or R5) strains of HIV-1. Monoclonal antibodies (mAb) to CCR5, 3A9 and 5C7, were used for biopanning a nonapeptide cysteine (C)-constrained phage-displayed random peptide library to ascertain contact residues and define tertiary structures of possible epitopes on CCR5. Reactivity of antibodies with phagotopes was established by enzyme-linked immunosorbent assay (ELISA). mAb 3A9 identified a phagotope C-HASIYDFGS-C (3A9/1), and 5C7 most frequently identified C-PHWLRDLRV-C (5C7/1). Corresponding peptides were synthesized. Phagotopes and synthetic peptides reacted in ELISA with corresponding antibodies and synthetic peptides inhibited antibody binding to the phagotopes. Reactivity by immunofluorescence of 3A9 with CCR5 was strongly inhibited by the corresponding peptide. Both mAb 3A9 and 5C7 reacted similarly with phagotopes and the corresponding peptide selected by the alternative mAb. The sequences of peptide inserts of phagotopes could be aligned as mimotopes of the sequence of CCR5. For phage 3A9/1, the motif SIYD aligned to residues at the N terminus and FG to residues on the first extracellular loop; for 5C7/1, residues at the N terminus, first extracellular loop, and possibly the third extracellular loop could be aligned and so would contribute to the mimotope. The synthetic peptides corresponding to the isolated phagotopes showed a CD4-dependent reactivity with gp120 of a primary, m-tropic HIV-1 isolate. Thus reactivity of antibodies raised to CCR5 against phage-displayed peptides defined mimotopes that reflect binding sites for these antibodies and reveal a part of the gp120 binding sites on CCR5.
Resumo:
Phage display is an advanced technology that can be used to characterize the interactions of antibody with antigen at the molecular level. It provides valuable data when applied to the investigation of IgE interaction with allergens. The aim of this rostrum article is to provide an explanation of the potential of phage display for increasing the understanding of allergen- IgE interaction, the discovery of diagnostic reagents, and the development of novel therapeutics for the treatment of allergic disease. The significance of initial studies that have applied phage display technology in allergy research will be highlighted. Phage display has been used to clone human IgE to timothy grass pollen allergen Phl p 5, to characterize the epitopes for murine and human antibodies to a birch pollen allergen Bet v 1, and to elucidate the epitopes of a murine mAb to the house dust mite allergen Der p 1. The technology has identified peptides that functionally mimic sites of human IgE constant domains and that were used to raise antiserum for blocking binding of IgE to the FcεRI on basophils and subsequent release of histamine. Phage display has also been used to characterize novel peanut and fungal allergens. The method has been used to increase our understanding of the molecular basis of allergen-IgE interactions and to develop clinically relevant reagents with the pharmacologic potential to block the effector phase of allergic reactions. Many advances from these early studies are likely as phage display technology evolves and allergists gain expertise in its research applications.
Resumo:
Biopanning of phage-displayed random peptide libraries is a powerful technique for identifying peptides that mimic epitopes (mimotopes) for monoclonal antibodies (mAbs). However, peptides derived using polyclonal antisera may represent epitopes for a diverse range of antibodies. Hence following screening of phage libraries with polyclonal antisera, including autoimmune disease sera, a procedure is required to distinguish relevant from irrelevant phagotopes. We therefore applied the multiple sequence alignment algorithm PILEUP together with a matrix for scoring amino acid substitutions based on physicochemical properties to generate guide trees depicting relatedness of selected peptides. A random heptapeptide library was biopanned nine times using no selecting antibodies, immunoglobulin G (IgG) from sera of subjects with autoimmune diseases (primary biliary cirrhosis (PBC) and type 1 diabetes) and three murine ascites fluids that contained mAbs to overlapping epitope(s) on the Ross River Virus envelope protein 2. Peptides randomly sampled from the library were distributed throughout the guide tree of the total set of peptides whilst many of the peptides derived in the absence of selecting antibody aligned to a single cluster. Moreover peptides selected by different sources of IgG aligned to separate clusters, each with a different amino acid motif. These alignments were validated by testing all of the 53 phagotopes derived using IgG from PBC sera for reactivity by capture ELISA with antibodies affinity purified on the E2 subunit of the pyruvate dehydrogenase complex (PDC-E2), the major autoantigen in PBC: only those phagotopes that aligned to PBC-associated clusters were reactive. Hence the multiple sequence alignment procedure discriminates relevant from irrelevant phagotopes and thus a major difficulty with biopanning phage-displayed random peptide libraries with polyclonal antibodies is surmounted.
Resumo:
Antibody screening of phage-displayed random peptide libraries to identify mimotopes of conformational epitopes is promising. However, because interpretations can be difficult, an exemplary system has been used in the present study to investigate whether variation in the peptide sequences of selected phagotopes corresponded with variation in immunoreactivity. The phagotopes, derived using a well-characterized monoclonal antibody, CII-C1, to a known conformational epitope on type II collagen, C1, were tested by direct and inhibition ELISA for reactivity with CII-C1. A multiple sequence alignment algorithm, PILEUP, was used to sort the peptides expressed by the phagotopes into clusters. A model was prepared of the C1 epitope on type II collagen. The 12 selected phagotopes reacted with CII-C1 by both direct ELISA (titres from < 100-11 200) and inhibition ELISA (20-100% inhibition); the reactivity varied according to the peptide sequence and assay format. The differences in reactivity between the phagotopes were mostly in accord with the alignment, by PILEUP, of the peptide sequences. The finding that the phagotopes functionally mimicked the C1 epitope on collagen was validated in that amino acids RRL at the amino terminal of many of the peptides were topographically demonstrable on the model of the C1 epitope. Notably, one phagotope that expressed the widely divergent peptide C-IAPKRHNSA-C also mimicked the C1 epitope, as judged by reactivity in each of the assays used: these included cross-inhibition of CII-C1 reactivity with each of the other phagotopes and inhibition by a synthetic peptide corresponding to that expressed by the most frequently selected phagotope, RRLPFGSQM. Thus, it has been demonstrated that multiple phage-displayed peptides can mimic the same epitope and that observed immunoreactivity of selected phagotopes with the selecting mAb can depend on the primary sequence of the expressed peptide and also on the assay format used.
Resumo:
Serum and synovial antibody reactivities of caprine arthritis encephalitis virus (CAEV) infected goats were assessed by Western blotting against purified CAEV antigen and the greatest intensity of reactivity in the serum of arthritic goats was to the gp45 transmembrane protein (TM). The extracytoplasmic domain of the TM gene was cloned into a pGEX vector and expressed in Escherichia coil as a glutathione S transferase fusion protein (GST-TM). This clone was found to be 90.5 and 89.2% homologous to published sequences of CAEV TM gene. Serum of 16 goats naturally infected with CAEV were examined by Western blotting for reactivity to the fusion protein. Antibody reactivity to the GST-TM correlated with clinically detectable arthritis (R = 0.642, P ≤ 0.007). The hypothesis that the immune response to the envelope proteins of the CAEV contributes to the severity of arthritis in goats naturally infected with CAEV via epitope mimicry was tested. Antibodies from 5 CAEV infected goats were affinity purified against the GST-TM fusion protein and tested for cross-reactivity with a series of goat synovial extracts and proteogylcans. No serum antibody response or cross-reactivity of affinity purified antibodies could be detected. Peptides of the CAEV SU that were predicted to be linear epitopes and a similar heat shock protein 83 (HSP) peptide identified by database searching, were synthesized and tested for reactivity in CAEV goats using ELISA, in vitro lymphocyte proliferation and delayed type hypersensitivity (DTH) assays. Peripheral blood lymphocytes from 10 of 17 goats with long term natural CAEV infections proliferated in vitro in response to CAEV and in vivo 3 of 7 CAEV infected goats had a DTH reaction to CAEV antigen. However, none of the peptides elicited significant cell mediated immune responses from CAEV infected goats. No antibody reactivity to the SU peptides or HSP peptide was found. We observed that the antibody reactivity to the CAEV TM protein associated with severity of arthritis however epitope mimicry by the envelope proteins of CAEV is unlikely to be involved.
Resumo:
Mimicry of host antigens by infectious agents may induce cross-reactive autoimmune responses to epitopes within host proteins which, in susceptible individuals, may tip the balance of immunological response versus tolerance toward response and subsequently lead to autoimmune disease. Epitope mimicry may indeed be involved in the pathogenesis of several diseases such as post-viral myocarditis or Chagas disease, but for many other diseases in which it has been implicated, such as insulin-dependent diabetes mellitis or rheumatoid arthritis, convincing evidence is still lacking. Even if an epitope mimic can support a cross-reactive T or B cell response in vitro, its ability to induce an autoimmune disease in vivo will depend upon the appropriate presentation of the mimicked host antigen in the target tissue and, in the case of T cell mimics, the ability of the mimicking epitope to induce a proliferative rather than anergizing response upon engagement of the MHC-peptide complex with the T cell receptor. B cell presentation of mimicking foreign antigen to T cells is a possible mechanism for instigating an autoimmune response to self antigens that in turn can lead to autoimmune disease under particular conditions of antigen presentation, secondary signalling and effector cell repertoire. In this review evidence in support of epitope mimicry is examined in the light of the necessary immunological considerations of the theory.
Resumo:
Epitope mimicry is the theory that an infectious agent such as a virus causes pathological effects via mimicry of host proteins and thus elicits a cross-reactive immune response to host tissues. Weise and Carnegie (1988) found a region of sequence similarity between the pol gene of the Maedi Visna virus (MVV), which induces demyelinating encephalitis in sheep, and myelin basic protein (MBP), which is known to induce experimental allergic encephalitis (EAE) in laboratory animals. In this study, cross-reactions between sera raised in sheep against synthetic peptides of MVV (TGKIPWILLPGR) and 21.5 kDa MBP (SGKVPWLKRPGR) were demonstrated using enzyme-linked immunosorbant assay (ELISA) and thin layer chromatography (TLC) immunoprobing. The antibody responses of MVV-infected sheep were investigated using ELISA against the peptides, and MBP protein, immunoprobing of the peptides on TPC plates and Western blotting against MBP. Slight significant reactions to the 21.5 kDa MBP peptide (P < 0.001) and to a lesser extent sheep MBP (P < 0.004) were detected in ELISA. The MBP peptide evoked stronger responses from more sera than the MVV peptide on immunoprobed TLC plates. On the Western blots, eight of the 23 sheep with Visna had serum reactivity to MBP. This slight reaction to MBP in MVV-infected sheep is of interest because of the immune responses to MBP evident in multiple sclerosis and EAE, but its relevance in Visna is limited since no correlation with disease severity was observed. The cell-mediated immune responses of MVV-infected sheep against similar peptides was assessed. The peptides did not stimulate proliferation of peripheral blood lymphocytes of MVV-infected sheep. Since the MVV peptide was not recognised by antibodies or T lymphocytes from MVV-infected and encephalic sheep, it was concluded that epitope mimicry of this 21.5 kDa MBP peptide by the similar MVV pol peptide was not contributing to the immunopathogenesis of Visna. The slight antibody response to MBP and the MBP peptide can be attributed to by-stander effects of the immunopathology of MVV-induced encephalitis.
Resumo:
Cost estimating is a key task within Quantity Surveyors’ (QS) offices. Provision of an accurate estimate is vital to ensure that the objectives of the client are met by staying within the client’s budget. Building Information Modelling (BIM) is an evolving technology that has gained attention in the construction industries all over the world. Benefits from the use of BIM include cost and time savings if the processes used by the procurement team are adapted to maximise the benefits of BIM. BIM can be used by QSs to automate aspects of quantity take-off and the preparation of estimates, decreasing turnaround time and assist in controlling errors and inaccuracies. The Malaysian government has decided to require the use of BIM for its projects beginning from 2016. However, slow uptake is reported in the use of BIM both within companies and to support collaboration within the Malaysian industry. It has been recommended that QSs to start evaluating the impact of BIM on their practices. This paper reviews the perspectives of QSs in Malaysia towards the use of BIM to achieve more dependable results in their cost estimating practice. The objectives of this paper include identifying strategies in improving practice and potential adoption drivers that lead QSs to BIM usage in their construction projects. From the expert interviews, it was found out that, despite still using traditional methods and not practising BIM, the interviewees still acquire limited knowledge related to BIM. There are some drivers that potentially motivate them to employ BIM in their practices. These include client demands, innovation in traditional methods, speed in estimating costs, reduced time and costs, improvement in practices and self-awareness, efficiency in projects, and competition from other companies. The findings of this paper identify the potential drivers in encouraging Malaysian Quantity Surveyors to exploit BIM in their construction projects.
Resumo:
Genital tract carriage of group B streptococcus (GBS) is prevalent among adult women; however, the dynamics of chronic GBS genital tract carriage, including how GBS persists in this immunologically active host niche long term, are not well defined. To our knowledge, in this study, we report the first animal model of chronic GBS genital tract colonization using female mice synchronized into estrus by delivery of 17β-estradiol prior to intravaginal challenge with wild-type GBS 874391. Cervicovaginal swabs, which were used to measure bacterial persistence, showed that GBS colonized the vaginal mucosa of mice at high numbers (106–107 CFU/swab) for at least 90 d. Cellular and histological analyses showed that chronic GBS colonization of the murine genital tract caused significant lymphocyte and PMN cell infiltrates, which were localized to the vaginal mucosal surface. Long-term colonization was independent of regular hormone cycling. Immunological analyses of 23 soluble proteins related to chemotaxis and inflammation showed that the host response to GBS in the genital tract comprised markers of innate immune activation including cytokines such as GM-CSF and TNF-α. A nonhemolytic isogenic mutant of GBS 874391, Δcyle9, was impaired for colonization and was associated with amplified local PMN responses. Induction of DNA neutrophil extracellular traps, which was observed in GBS-infected human PMNs in vitro in a hemolysin-dependent manner, appeared to be part of this response. Overall, this study defines key infection dynamics in a novel murine model of chronic GBS genital tract colonization and establishes previously unknown cellular and soluble defense responses to GBS in the female genital tract.
Resumo:
The koala (Phascolarctos cinereus) is an iconic Australian marsupial species that is facing many threats to its survival. Chlamydia pecorum infections are a significant contributor to this ongoing decline. A major limiting factor in our ability to manage and control chlamydial disease in koalas is a limited understanding of the koala’s cell-mediated immune response to infections by this bacterial pathogen. To identify immunological markers associated with chlamydial infection and disease in koalas, we used koala-specific Quantitative Real Time PCR (qrtPCR) assays to profile the cytokine responses of Peripheral Blood Mononuclear Cells (PBMCs) collected from 41 koalas with different stages of chlamydial disease. Target cytokines included the principal Th1 (Interferon gamma; IFNγ), Th2 (Interleukin 10; IL10), and pro-inflammatory cytokines (Tumor Necrosis Factor alpha; TNFα). A novel koala-specific IL17A qrtPCR assay was also developed as part of this study to quantitate the gene expression of this Th17 cytokine in koalas. A statistically significant higher IL17A gene expression was observed in animals with current chlamydial disease compared to animals with asymptomatic chlamydial infection. A modest up-regulation of pro-inflammatory cytokines, such as TNFα and IFNγ, was also observed in these animals with signs of current chlamydial disease. IL10 gene expression was not evident in the majority of animals from both groups. Future longitudinal studies are now required to confirm the role played by cytokines in pathology and/or protection against C. pecorum infection in the koala.
Resumo:
This paper proposes the Clinical Pathway Analysis Method (CPAM) approach that enables the extraction of valuable organisational and medical information on past clinical pathway executions from the event logs of healthcare information systems. The method deals with the complexity of real-world clinical pathways by introducing a perspective-based segmentation of the date-stamped event log. CPAM enables the clinical pathway analyst to effectively and efficiently acquire a profound insight into the clinical pathways. By comparing the specific medical conditions of patients with the factors used for characterising the different clinical pathway variants, the medical expert can identify the best therapeutic option. Process mining-based analytics enables the acquisition of valuable insights into clinical pathways, based on the complete audit traces of previous clinical pathway instances. Additionally, the methodology is suited to assess guideline compliance and analyse adverse events. Finally, the methodology provides support for eliciting tacit knowledge and providing treatment selection assistance.
Resumo:
Organ-specific immunity is a feature of many infectious diseases, including visceral leishmaniasis caused by Leishmania donovani. Experimental visceral leishmaniasis in genetically susceptible mice is characterized by an acute, resolving infection in the liver and chronic infection in the spleen. CD4+ T cell responses are critical for the establishment and maintenance of hepatic immunity in this disease model, but their role in chronically infected spleens remains unclear. In this study, we show that dendritic cells are critical for CD4+ T cell activation and expansion in all tissue sites examined. We found that FTY720-mediated blockade of T cell trafficking early in infection prevented Ag-specific CD4+ T cells from appearing in lymph nodes, but not the spleen and liver, suggesting that early CD4+ T cell priming does not occur in liver-draining lymph nodes. Extended treatment with FTY720 over the first month of infection increased parasite burdens, although this associated with blockade of lymphocyte egress from secondary lymphoid tissue, as well as with more generalized splenic lymphopenia. Importantly, we demonstrate that CD4+ T cells are required for the establishment and maintenance of antiparasitic immunity in the liver, as well as for immune surveillance and suppression of parasite outgrowth in chronically infected spleens. Finally, although early CD4+ T cell priming appeared to occur most effectively in the spleen, we unexpectedly revealed that protective CD4+ T cell-mediated hepatic immunity could be generated in the complete absence of all secondary lymphoid tissues.