968 resultados para acidity in solids
Resumo:
A busca pela melhoria da qualidade de vida e a procura por alimentos naturais e funcionais são crescentes. A incorporação de prebióticos e corantes naturais pode agregar valor ao produto, por serem capazes de melhorar sua qualidade e por apresentarem grandes atrativos tecnológicos. Portanto, o objetivo deste trabalho foi avaliar o efeito da adição de prebióticos (inulina e oligofrutose) e corante natural (extrato de casca de jabuticaba) nas características de queijo petit suisse. Foi realizada análise da composição físico-química (extrato seco total, cinzas, proteínas, lipídeos, carboidratos e acidez titulável) logo após o processamento, análise do pH, colorimetria, teor de compostos bioativos e atividade antioxidante em diferentes tempos de armazenamento (0, 7, 14, 21 e 28 dias), análise do teor de fibras alimentares da formulação de queijo petit suisse com maior atividade antioxidante ao final da vida de prateleira e análises microbiológica e sensorial. O queijo petit suisse elaborado foi dividido em cinco formulações, de acordo com a concentração de corante natural incorporado, que foram 0%, 1,5%, 2,0%, 2,5% e 3,0%. Os dados obtidos com as análises realizadas logo após o processamento e análise sensorial foram submetidos à análise de variância e teste de Tukey, os dados obtidos com as análises realizadas em diferentes tempos de armazenamento foram submetidos à análise de variância e estudo do comportamento cinético, e a análise de fibras e microbiológica foi analisada por meio de estatística descritiva. Os valores de extrato seco total, proteínas, lipídeos, cinzas e carboidrato não diferiram significativamente (p>0,05) entre as formulações. A formulação sem adição de corante natural apresentou menor acidez (p≤0,05), e com o aumento da concentração de corante natural, maior foi a acidez do queijo. Os teores de antocianinas, fenólicos totais e capacidade antioxidante foram maiores com o aumento da concentração de corante incorporado, sendo que o teor de antocianinas reduziu com o decorrer do tempo de armazenamento. O valor encontrado de fibras para a formulação contendo 3,0% de corante natural foi baixo, e o produto não apresentou alegação de propriedade funcional. A fim de verificar se o queijo estava próprio para o consumo, foi realizada análise microbiológica para coliformes termotolerantes, estando todas as formulações de queijo petit suisse em condições sanitárias satisfatórias. A análise sensorial foi realizada em duas etapas. Na primeira etapa foi realizado teste de aceitação com avaliação dos atributos cor, sabor, consistência e impressão global, e intenção de compra para todas as formulações com incorporação de corante natural. Na segunda etapa foi realizado o teste de aceitação com informação nutricional do produto para a amostra mais aceita na primeira etapa. Como resultado, foi observado que o atributo cor foi o único que apresentou diferença significativa (p≤0,05) entre as formulações, sendo as mais aceitas com concentração 2,5% e 3,0%. De forma geral, todas as formulações foram bem aceitas, porém, a formulação com maior adição de corante natural foi a que xiii apresentou maiores notas. Assim, o queijo com maior concentração de corante natural foi o utilizado na segunda etapa sensorial, sendo observada influência das informações nos atributos cor e consistência (p≤0,05). Dessa forma, a utilização de prebióticos e corante natural de casca de jabuticaba em queijo petit suisse foi viável por não alterar a composição centesimal do produto, além de conferir ao produto uma coloração atrativa.
Resumo:
Understanding the genetic variability of a species is crucial for the progress of a genetic breeding program and requires characterization and evaluation of germplasm. This study aimed to characterize and evaluate 101 tomato subsamples of the Salad group (fresh market) and two commercial controls, one of the Salad group (cv. Fanny) and another of the Santa Cruz group (cv. Santa Clara). Four experiments were conducted in a randomized block design with three replications and five plants per plot. The joint analysis of variance was performed and characteristics with significant complex interaction between control and experiment were excluded. Subsequently, the multicollinearity diagnostic test was carried out and characteristics that contributed to severe multicollinearity were excluded. The relative importance of each characteristics for genetic divergence was calculated by the Singh's method (Singh, 1981), and the less important ones were excluded according to Garcia (1998). Results showed large genetic divergence among the subsamples for morphological, agronomic and organoleptic characteristics, indicating potential for genetic improvement. The characteristics total soluble solids, mean number of good fruits per plant, endocarp thickness, mean mass of marketable fruit per plant, total acidity, mean number of unmarketable fruit per plant, internode diameter, internode length, main stem thickness and leaf width contributed little to the genetic divergence between the subsamples and may be excluded in future studies.
Resumo:
ABSTRACT The objective of this work was to study the distribution of values of the coefficient of variation (CV) in the experiments of papaya crop (Carica papaya L.) by proposing ranges to guide researchers in their evaluation for different characters in the field. The data used in this study were obtained by bibliographical review in Brazilian journals, dissertations and thesis. This study considered the following characters: diameter of the stalk, insertion height of the first fruit, plant height, number of fruits per plant, fruit biomass, fruit length, equatorial diameter of the fruit, pulp thickness, fruit firmness, soluble solids and internal cavity diameter, from which, value ranges were obtained for the CV values for each character, based on the methodology proposed by Garcia, Costa and by the standard classification of Pimentel-Gomes. The results obtained in this study indicated that ranges of CV values were different among various characters, presenting a large variation, which justifies the necessity of using specific evaluation range for each character. In addition, the use of classification ranges obtained from methodology of Costa is recommended.
Resumo:
ABSTRACT Maintaining cantaloupe melon at field temperature impairs conservation as it speeds up cell metabolism and transpiration, and, consequently, reduces shelf life. This study aimed to evaluate the conservation of Torreon hybrid cantaloupe using the hydrocooling treatment. Fruits were harvested at the commercial maturity stage (60 days after planting), in the morning, at the Nova California Farm, municipality of Mossoró-RN, in September 2007. One set of fruit was immersed in chilled water at 5 ºC for 5 min, at the packing house, while the remaining set was not hydro cooled. Then, both sets (treated and untreated with hydrocooling) were pre-cooled in air forced tunnels at 7 ºC, until the temperature in the pulp reached 10 ºC. Both fruit sets were stored for 0, 14, 21, 28 and 35 days under modified atmosphere at 3 ± 1 oC and 90 ± 5% RH. After each storage period, the fruits were incubated in an atmosphere-controlled chamber at 20 ± 2 oC and 80 ± 5% de RH, for seven days. The following characteristics were evaluated: external and internal appearance, mass loss, soluble solids, firmness and titrable acidity. The experiment was arranged in a completely randomized split-plot design with four replications of three fruits. The plots consisted of the hydrocooling conditions (with and without fruit soaking in chilled water), and the sub-plots consisted of the storage times (0, 14, 21, 28 and 35 days).The treatment with hydrocooling was efficient in keeping the firmness and soluble solids of the fruits and shortened the pre-cooling time in the cooling tunnel. However, hydrocooling did not increase fruit shelf-life.
Resumo:
The present work concerns a new synthesis approach to prepare niobium based SAPO materials with AEL structure and the characterization ofNb species incorporated within the inorganic matrixes. The SAPO-11 materials were synthesized with or without the help of a small amine, methylamine (MA) as co-template, while Nb was added directly during the preparation of the initial gel. Structural, textural and acidic properties of the different supports were evaluated by XRD, TPR, UV-Vis spectroscopy, pyridine adsorption followed by IR spectroscopy and thermal analyses. Pure and well crystalline Nb based SAPO-11 materials were obtained, either with or without MA, using in the initial gel a low Si content of about 0.6. Increasing the Si content of the gel up to 0.9 led to an important decrease of the samples crystallinity. Niobium was found to incorporate the AEL pores support as small Nb2O5 oxide particles and also as extra framework cationic species (Nb5+), compensating the negative charges from the matrix and generating new Lewis acid sites. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Solubility measurements of quinizarin. (1,4-dihydroxyanthraquinone), disperse red 9 (1-(methylamino) anthraquinone), and disperse blue 14 (1,4-bis(methylamino)anthraquinone) in supercritical carbon dioxide (SC CO2) were carried out in a flow type apparatus, at a temperature range from (333.2 to 393.2) K and at pressures from (12.0 to 40.0) MPa. Mole fraction solubility of the three dyes decreases in the order quinizarin (2.9 x 10(-6) to 2.9.10(-4)), red 9 (1.4 x 10(-6) to 3.2 x 10(-4)), and blue 14 (7.8 x 10(-8) to 2.2 x 10(-5)). Four semiempirical density based models were used to correlatethe solubility of the dyes in the SC CO2. From the correlation results, the total heat of reaction, heat of vaporization plus the heat of solvation of the solute, were calculated and compared with the results presented in the literature. The solubilities of the three dyes were correlated also applying the Soave-Redlich-Kwong cubic equation of state (SRK CEoS) with classical mixing rules, and the physical properties required for the modeling were estimated and reported.
Resumo:
The bifunctional transformation of n-hexane was carried out over Pt/MCM-22 based catalysts. MCM-22 was synthesized and submitted to ion exchange with rare earth nitrate solutions of La, Nd and Yb, followed by Pt introduction. Three different methods were used to introduce about 1 wt% of Pt in the zeolite: ion exchange, incipient wetness impregnation and mechanical mixture with Pt/Al(2)O(3). The bifunctional catalysts were characterized by transmission electron microscopy and by the model reaction of toluene hydrogenation. These experiments showed that, in the ion exchanged sample, Pt is located both within the inner micropores and on the outer surface, whereas in the impregnated one, the metal is essentially located on the outer surface under the form of large particles. The presence of RE elements increases the hydrogenating activity of Pt/MCM-22 since the location of these species at the vicinity of metal particles causes modification on its electronic properties. Whatever the mode of Pt introduction, a fast initial decrease in conversion is observed for n-hexane transformation, followed by a plateau related to the occurrence of the catalytic transformations at the hemicages located at the outer surface of the crystals. The effect of rare earth elements on the hydrogenating function leads to a lower selectivity in dibranched isomers and increased amounts of light products.
Resumo:
The reactions of FeCl2 center dot 2H(2)O and 2,2,2-tris(1-pyrazolyl) ethanol HOCH2C(pz)(3) (1) (pz = pyrazolyl) afford [Fe{HOCH2C(pz)(3)}(2)][FeCl4]Cl (2), [Fe{HOCH2C(pz)(3)}(2)](2)[Fe2OCl6](Cl)(2)center dot 4H(2)O (3 center dot 4H(2)O), [Fe{HOCH2C(pz)(3)}(2)] [FeCl{HOCH2C(pz)(3)}(H2O)(2)](2)(Cl)(4) (4) or [Fe{HOCH2C(pz)(3)}(2)]Cl-2 (5), depending on the experimental conditions. Compounds 1-5 were isolated as air-stable crystalline solids and fully characterized, including (1-4) by single-crystal X-ray diffraction analyses. The latter technique revealed strong intermolecular H-bonds involving the OH group of the scorpionate 2 and 3 giving rise to 1D chains which, in 3, are further expanded to a 2D network with intercalated infinite and almost plane chains of H-interacting water molecules. In 4, intermolecular pi center dot center dot center dot pi interactions involving the pyrazolyl rings are relevant. Complexes 2-5 display a high solubility in water (S-25 degrees C ca. 10-12 mg mL(-1)), a favourable feature towards their application as catalysts (or catalyst precursors) for the peroxidative oxidation of cyclo-hexane to cyclohexanol and cyclohexanone, with aqueous H2O2/MeCN, at room temperature (TON values up to ca. 385). (C) 2011 Elsevier B. V. All rights reserved.
Resumo:
Cork processing wastewater is a very complex mixture of vegetal extracts and has, among other natural compounds, a very high content of phenolic/tannic colloidal matter that is responsible for severe environmental problems. In the present work, the concentration of this wastewater by nanofiltration was investigated with the aim of producing a cork tannin concentrate to be utilized in tanning. Permeation results showed that the permeate fluxes are controlled by both osmotic pressure and fouling/gel layer phenomena, leading to a rapid decrease of permeate fluxes with the concentration factor. The rejection coefficients to organic matter were higher than 95%, indicating that nanofiltration has a very good ability to concentrate the tannins and produce a permeate stream depleted from organic matter. The cork tannin concentrate obtained by nanofiltration and evaporation had total solids concentration of 34.8 g/l. The skins tanned by this concentrate were effectively converted to leather with a shrinking temperature of 7 degrees C.
Resumo:
Solubilities of three primary amides, namely, acetanilide, propanamide, and butanamide, in supercritical carbon dioxide were measured at T = (308.2, 313.2, and 323.2) K over the pressure range (9.0 to 40.0) MPa by a flow type apparatus. The solubility behavior of the three solids shows an analogous trend with a crossover region of the respective isotherms between (12 to 14) MPa. The solubility of each amide, at the same temperature and pressure, decreases from propanamide to acetanilide. Pure compound properties required for the modeling were estimated, and the solubilities of the amides were correlated by using the Soave-Redlich-Kwong cubic equation of state with an absolute average relative deviation (AARD) from (1.3 to 6.1) %.
Resumo:
The present work aims at evaluating the efficiency of an organic polymer from vegetal source used as coagulant for treating different types of industrial effluents. This coagulant (Flox-QT) is obtained from the Black Acacia (Acacia mearnsii). The effluents studied were produced in petrochemical, leather, cork stoppers, metalworking, olive oil, glue, paint (printing), textile and paper industries. The parameters analyzed in the effluents before and after treatment were selected according to the type of wastewater and included pH, conductivity, apparent colour, turbidity, total suspended solids (TSS), chemical oxygen demand (COD) and some metals. The coagulant proved to be efficient for almost all effluents tested. The best results were obtained for the paper industry wastewater, with 91% removal of chemical oxygen demand and 95% of total suspended solids removal. The estimated cost of this treatment would be only 0.24 Euro per cubic meter of treated effluent, only regarding the price of the coagulant and the required dosage. The use of this coagulant is also adequate for the valorisation of the sludge obtained, which in this case could be recycled for paper production.
Resumo:
Hierarchical SAPO-11 was synthesized using a commercial Merck carbon as template. Oxidant acid treatments were performed on the carbon matrix in order to investigate its influence on the properties of SAPO-11. Structural, textural and acidic properties of the different materials were evaluated by XRD, SEM, N-2 adsorption, pyridine adsorption followed by IR spectroscopy and thermal analyses. The catalytic behavior of the materials (with 0.5 wt.% Pt, introduced by mechanic mixture with Pt/Al2O3), were studied in the hydroisomerization of n-decane. The hierarchical samples showed higher yields in monobranched isomers than typical microporous SAPO-11, as a direct consequence of the modification on both porosity and acidity, the later one being the most predominant. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia do Ambiente, perfil Sanitária
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia do Ambiente,perfil Sanitária
Resumo:
Pea-shoots are a new option as ready-to-eat baby-leaf vegetable. However, data about the nutritional composition and the shelf-life stability of these leaves, especially their phytonutrient composition is scarce. In this work, the macronutrient, micronutrient and phytonutrients profile of minimally processed pea shoots were evaluated at the beginning and at the end of a 10-day storage period. Several physicochemical characteristics (color, pH, total soluble solids, and total titratable acidity) were also monitored. Standard AOAC methods were applied in the nutritional value evaluation, while chromatographic methods with UV–vis and mass detection were used to analyze free forms of vitamins (HPLC-DAD-ESI-MS/MS), carotenoids (HPLC-DAD-APCI-MSn) and flavonoid compounds (HPLC-DAD-ESI-MSn). Atomic absorption spectrometry (HR-CS-AAS) was employed to characterize the mineral content of the leaves. As expected, pea leaves had a high water (91.5%) and low fat (0.3%) and carbohydrate (1.9%) contents, being a good source of dietary fiber (2.1%). Pea shoots showed a high content of vitamins C, E and A, potassium and phosphorous compared to other ready-to-eat green leafy vegetables. The carotenoid profile revealed a high content of β-carotene and lutein, typical from green leafy vegetables. The leaves had a mean flavonoid content of 329 mg/100 g of fresh product, mainly composed by glycosylated quercetin and kaempferol derivatives. Pea shoots kept their fresh appearance during the storage being color maintained throughout the shelf-life. The nutritional composition was in general stable during storage, showing some significant (p < 0.05) variation in certain water-soluble vitamins.