753 resultados para accretionary wedge
Resumo:
OBJECTIVES: This study was designed to compare coronary collateral function in patients after bare-metal stent (BMS) or drug-eluting stent (DES) implantation. BACKGROUND: Drug-eluting stents have an inhibitory effect on the production of cytokines, chemotactic proteins, and growth factors, and may therefore negatively affect coronary collateral growth. METHODS: A total of 120 patients with long-term stable coronary artery disease (CAD) after stent implantation were included. Both the BMS group and the DES group comprised 60 patients matched for in-stent stenosis severity of the vessel undergoing collateral flow index (CFI) measurement at follow-up and for the duration of follow-up. The primary end point of the investigation was invasively determined coronary collateral function 6 months after stent implantation. Collateral function was assessed by simultaneous aortic, coronary wedge, and central venous pressure measurements (yielding CFI) and by intracoronary electrocardiogram during balloon occlusion. RESULTS: There were no differences between the groups regarding age, gender, body mass index, frequency of cardiovascular risk factors, use of cardiovascular drugs, severity of CAD, or site of coronary artery stenoses. Despite equal in-stent stenosis severity (46 +/- 34% and 45 +/- 36%) and equal follow-up duration (6.2 +/- 10 months and 6.5 +/- 5.4 months), CFI was diminished in the DES versus BMS group (0.154 +/- 0.097 vs. 0.224 +/- 0.142; p = 0.0049), and the rate of collaterals insufficient to prevent ischemia during occlusion (intracoronary electrocardiographic ST-segment elevation > or =0.1 mV) was higher with 50 of 60 patients in the DES group and 33 of 60 patients in the BMS group (p = 0.001). CONCLUSIONS: Collateral function long after coronary stenting is impaired with DES (sirolimus and paclitaxel) when compared with BMS. Considering the protective nature of collateral vessels, this could lead to more serious cardiac events in the presence of an abrupt coronary occlusion.
Resumo:
AIMS: Myocardial blood flow (MBF) is the gold standard to assess myocardial blood supply and, as recently shown, can be obtained by myocardial contrast echocardiography (MCE). The aims of this human study are (i) to test whether measurements of collateral-derived MBF by MCE are feasible during elective angioplasty and (ii) to validate the concept of pressure-derived collateral-flow assessment. METHODS AND RESULTS: Thirty patients with stable coronary artery disease underwent MCE of the collateral-receiving territory during and after angioplasty of 37 stenoses. MCE perfusion analysis was successful in 32 cases. MBF during and after angioplasty varied between 0.060-0.876 mL min(-1) g(-1) (0.304+/-0.196 mL min(-1) g(-1)) and 0.676-1.773 mL min(-1) g(-1) (1.207+/-0.327 mL min(-1) g(-1)), respectively. Collateral-perfusion index (CPI) is defined as the rate of MBF during and after angioplasty varied between 0.05 and 0.67 (0.26+/-0.15). During angioplasty, simultaneous measurements of mean aortic pressure, coronary wedge pressure, and central venous pressure determined the pressure-derived collateral-flow index (CFI(p)), which varied between 0.04 and 0.61 (0.23+/-0.14). Linear-regression analysis demonstrated an excellent agreement between CFI(p) and CPI (y=0.88 x +0.01; r(2)=0.92; P<0.0001). CONCLUSION: Collateral-derived MBF measurements by MCE during angioplasty are feasible and proved that the pressure-derived CFI exactly reflects collateral relative to normal myocardial perfusion in humans.
Resumo:
OBJECTIVES: To evaluate the effects on intestinal oxygen supply, and mucosal tissue oxygen tension during haemorrhage and after fluid resuscitation with either blood (B; n=7), gelatine (G; n=8), or lactated Ringer's solution (R; n=8) in an autoperfused, innervated jejunal segment in anaesthetized pigs. METHODS: To induce haemorrhagic shock, 50% of calculated blood volume was withdrawn. Systemic haemodynamics, mesenteric venous and systemic acid-base and blood gas variables, and lactate measurements were recorded. A flowmeter was used for measuring mesenteric arterial blood flow. Mucosal tissue oxygen tension (PO(2)muc), jejunal microvascular haemoglobin oxygen saturation (HbO(2)) and microvascular blood flow were measured. Measurements were performed at baseline, after haemorrhage and at four 20 min intervals after fluid resuscitation. After haemorrhage, animals were retransfused with blood, gelatine or lactated Ringer's solution until baseline pulmonary capillary wedge pressure was reached. RESULTS: After resuscitation, no significant differences in macrohaemodynamic parameters were observed between groups. Systemic and intestinal lactate concentration was significantly increased in animals receiving lactated Ringer's solution [5.6 (1.1) vs 3.3 (1.1) mmol litre(-1); 5.6 (1.1) vs 3.3 (1.2) mmol litre(-1)]. Oxygen supply to the intestine was impaired in animals receiving lactated Ringer's solution when compared with animals receiving blood. Blood and gelatine resuscitation resulted in higher HbO(2) than with lactated Ringer's resuscitation after haemorrhagic shock [B, 43.8 (10.4)%; G, 34.6 (9.4)%; R, 28.0 (9.3)%]. PO(2)muc was better preserved with gelatine resuscitation when compared with lactated Ringer's or blood resuscitation [20.0 (8.8) vs 13.8 (7.1) mm Hg, 15.2 (7.2) mm Hg, respectively]. CONCLUSION: Blood or gelatine infusion improves mucosal tissue oxygenation of the porcine jejunum after severe haemorrhage when compared with lactated Ringer's solution.
Resumo:
BACKGROUND: Elevated pulmonary vascular resistance (PVR) is relevant to prognosis of congestive heart failure and heart transplantation. Proof of reversibility by pharmacologic testing in potential transplantation candidates is important because it indicates a reduced probability of right ventricular failure or death in the early post-transplant period. This study aimed to clarify the possible extent of acute reversibility of elevated PVR in a large, consecutive cohort of heart transplant candidates. METHODS: This study included 208 consecutive patients (age 52 +/- 10 years, 89% men and 11% women, ejection fraction 21 +/- 9%, Vo2max 12.6 +/- 4.2 ml/kg/min) being evaluated for heart transplantation in 7 transplant centers in Germany and Switzerland. Testing was performed with increasing intravenous doses of prostaglandin E1 (PGE1; average maximum dose 173 +/- 115 ng/kg/min for at least 10 minutes) in 92 patients exhibiting a baseline PVR of > 2.5 Wood units (WU) and/or a transpulmonary gradient (TPG) of > 12 mm Hg. RESULTS: PGE1 testing lowered PVR from 4.1 +/- 2.0 to 2.1 +/- 1.1 WU (p < 0.01), increased cardiac output from 3.8 +/- 1.0 to 5.0 +/- 1.5 liters/min (p < 0.01), and decreased TPG from 14 +/- 4 to 10 +/- 3 mm Hg (p < 0.01), mean pulmonary artery pressure (PAM) from 39 +/- 9 to 29 +/- 9 mm Hg (p < 0.01) and mean pulmonary capillary wedge pressure (PCWP) from 24 +/- 7 to 19 +/- 9 mm Hg (p < 0.01). Mean aortic pressure (MAP) decreased to 85% and systemic vascular resistance (SVR) to 65% of baseline values (p < 0.01). Symptomatic systemic hypotension was not observed. For the whole population the percentage of patients with PVR > 2.5 WU was reduced from 44.2% to 10.5% with PGE1. PVR decreased in each patient; only 2 patients (1%) remained ineligible for listing because of a final PVR of > 4.0 WU. TPG, ejection fraction and male gender were independent predictors of reversibility of PVR. CONCLUSIONS: Elevated PVR in heart transplant candidates is highly reversible and can be normalized during acute pharmacologic testing with PGE1.
Resumo:
Arginine vasopressin (AVP) has been employed successfully during cardiopulmonary resuscitation, but there exist only few data about the effects of AVP infusion for cardiovascular failure during the post-cardiac arrest period. Cardiovascular failure is one of the main causes of death after successful resuscitation from cardiac arrest. Although the "post-resuscitation syndrome" has been described as a "sepsis-like" syndrome, there is little information about the haemodynamic response to AVP in advanced cardiovascular failure after cardiac arrest. In this retrospective study, haemodynamic and laboratory variables in 23 patients with cardiovascular failure unresponsive to standard haemodynamic therapy during the post-cardiac arrest period were obtained before, and 30 min, 1, 4, 12, 24, 48, and 72 h after initiation of a supplementary AVP infusion (4 IU/h). During the observation period, AVP significantly increased mean arterial blood pressure (58+/-14 to 75+/-19 mmHg, p < 0.001), and decreased noradrenaline (norepinephrine) (1.31+/-2.14 to 0.23+/-0.3 microg/kg/min, p = 0.03), adrenaline (epinephrine) (0.58+/-0.23 to 0.04+/-0.03 microg/kg/min, p = 0.001), and milrinone requirements (0.46+/-0.15 to 0.33+/-0.22 microg/kg/min, p < 0.001). Pulmonary capillary wedge pressure changed significantly (p < 0.001); an initial increase being followed by a decrease below baseline values. While arterial lactate concentrations (95+/-64 to 21+/-18 mg/dL, p < 0.001) and pH (7.27+/-0.14 to 7.4+/-0.14, p < 0.001) improved significantly, total bilirubin concentrations (1.12+/-0.95 to 3.04+/-3.79 mg/dL, p = 0.001) increased after AVP. There were no differences in the haemodynamic or laboratory response to AVP between survivors and non-survivors. In this study, advanced cardiovascular failure that was unresponsive to standard therapy could be reversed successfully with supplementary AVP infusion in >90% of patients surviving cardiac arrest.
Resumo:
PMMA is the most common bone substitute used for vertebroplasty. An increased fracture rate of the adjacent vertebrae has been observed after vertebroplasty. Decreased failure strength has been noted in a laboratory study of augmented functional spine units (FSUs), where the adjacent, non-augmented vertebral body always failed. This may provide evidence that rigid cement augmentation may facilitate the subsequent collapse of the adjacent vertebrae. The purpose of this study was to evaluate whether the decrease in failure strength of augmented FSUs can be avoided using low-modulus PMMA bone cement. In cadaveric FSUs, overall stiffness, failure strength and stiffness of the two vertebral bodies were determined under compression for both the treated and untreated specimens. Augmentation was performed on the caudal vertebrae with either regular or low-modulus PMMA. Endplate and wedge-shaped fractures occurred in the cranial and caudal vertebrae in the ratios endplate:wedge (cranial:caudal): 3:8 (5:6), 4:7 (7:4) and 10:1 (10:1) for control, low-modulus and regular cement group, respectively. The mean failure strength was 3.3 +/- 1 MPa with low-modulus cement, 2.9 +/- 1.2 MPa with regular cement and 3.6 +/- 1.3 MPa for the control group. Differences between the groups were not significant (p = 0.754 and p = 0.375, respectively, for low-modulus cement vs. control and regular cement vs. control). Overall FSU stiffness was not significantly affected by augmentation. Significant differences were observed for the stiffness differences of the cranial to the caudal vertebral body for the regular PMMA group to the other groups (p < 0.003). The individual vertebral stiffness values clearly showed the stiffening effect of the regular cement and the lesser alteration of the stiffness of the augmented vertebrae using the low-modulus PMMA compared to the control group (p = 0.999). In vitro biomechanical study and biomechanical evaluation of the hypothesis state that the failure strength of augmented functional spine units could be better preserved using low-modulus PMMA in comparison to regular PMMA cement.
Resumo:
The aim of this study was to assess the influence of the zero value subtraction on the performance of laser fluorescence (LFpen) for approximal caries detection. Three areas (cuspal, middle and cervical) of both mesial and distal buccal surfaces of 78 permanent molars were assessed using both wedge-shaped (WDG) and tapered wedge-shaped (TWDG) tips. With the addition of the average, one cut-off value for each area was obtained and the performance was assessed. The areas under the receiver operating characteristics (ROC) curve, specificity, sensitivity and accuracy with and without the zero value subtraction were calculated. The McNemar test revealed a statistically significant difference for specificity at thresholds D(1), D(2) and D(3) (WDG) and D(1) and D(2) (TWDG) when the zero value subtraction was not performed. Influence of the zero value subtraction on the LFpen performance was observed for approximal caries detection. However, when modified cut-off values were used, the zero value subtraction could be eliminated.
Resumo:
Osteoarthritis (OA) is a debilitating disease that is becoming more prevalent in today’s society. OA affects approximately 28 million adults in the United States alone and when present in the knee joint, usually leads to a total knee replacement. Numerous studies have been conducted to determine possible methods to halt the initiation of OA, but the structural integrity of the menisci has been shown have a direct effect on the progression of OA. Menisci are two C-shaped structures that are attached to the tibial plateau and aid in facilitating proper load transmission within the knee. The meniscal cross-section is wedge-like to fit the contour of the femoral condyles and help attenuate stresses on the tibial plateau. While meniscal tears are common, only the outer 1/3 of the meniscus is vascularized and has the capacity to heal, hence tears of the inner 2/3rds are generally treated via meniscectomy, leading to OA. To help combat this OA epidemic, an effective biomimetric meniscal replacement is needed. Numerous mechanical and biochemical studies have been conducted on the human meniscus, but very little is known about the mechanical properties on the nano-scale and how meniscal constituents are distributed in the meniscal cross-section. The regional (anterior, central and posterior) nano-mechanical properties of the meniscal superficial layers (both tibial and femoral contacting) and meniscal deep zone were investigated via nanoindentation to examine the regional inhomogeneity of both the lateral and medial menisci. Additionally, these results were compared to quantitative histological values to better formulate a structure-function relationship on the nano-scale. These data will prove imperative for further advancements of a tissue engineered meniscal replacement.
Resumo:
Reflection seismic data from the F3 block in the Dutch North Sea exhibits many large-amplitude reflections at shallow horizons, typically categorized as “brightspots ” (Schroot and Schuttenhelm, 2003), mainly because of their bright appearance. In most cases, these bright reflections show a significant “flatness” contrasting with local structural trends. While flatspots are often easily identified in thick reservoirs, we have often occasionally observed apparent flatspot tuning effects at fluid contacts near reservoir edges and in thin reservoir beds, while only poorly understanding them. We conclude that many of the shallow large-amplitude reflections in block F3 are dominated by flatspots, and we investigate the thin-bed tuning effects that such flatspots cause as they interact with the reflection from the reservoir’s upper boundary. There are two possible effects to be considered: (1) the “wedge-model” tuning effects of the flatspot and overlying brightspots, dimspots, or polarity-reversals; and (2) the stacking effects that result from possible inclusion of post-critical flatspot reflections in these shallow sands. We modeled the effects of these two phenomena for the particular stratigraphic sequence in block F3. Our results suggest that stacking of post-critical flatspot reflections can cause similar large-amplitude but flat reflections, in some cases even causing an interface expected to produce a ‘dimspot’ to appear as a ‘brightspot’. Analysis of NMO stretch and muting shows the likely exclusion of critical offset data in stacked output. If post-critical reflections are included in stacking, unusual results will be observed. In the North Sea case, we conclude the tuning effect was the primary reason causing for the brightness and flatness of these reflections. However, it is still important to note that care should be taken while applying muting on reflections with wide range of incidence angles and the inclusion of critical offset data may cause some spurious features in the stacked section.
Resumo:
OBJECTIVE: This study investigates by means of a new bone-prosthesis interface motion detector whether conceptual design differences of femoral stems are reflected in their primary stability pattern. DESIGN: An in vitro experiment using a biaxial materials testing machine in combination with three-dimensional motion measurement devices was performed. BACKGROUND: Primary stability of uncemented total hip replacements is considered to be a prerequisite for the quality of bony ongrowth to the femoral stem. Dynamic motion as a response to loading as well as total motion of the prosthesis have to be considered under quasi-physiological cyclic loading conditions. METHODS: Seven paired fresh cadaveric femora were used for the testing of two types of uncemented femoral stems with different anchoring concepts: CLS stem (Spotorno) and Cone Prosthesis (Wagner). Under sinusoidal cyclic loading mimicking in vivo hip joint forces a new measurement technique was applied allowing for the analysis of the three-dimensional interface motion. RESULTS: Considerable differences between the two prostheses could be detected both in their dynamic motion and total motion behaviour. Whereas the CLS stem, due to the wedge-shaped concept, provides smaller total motions, the longitudinal ribs of the Cone prostheses result in a substantially smaller dynamic motion. CONCLUSIONS: The measuring technique provided reliable and accurate data illustrating the three-dimensional interface motion of uncemented femoral stems.
Resumo:
BACKGROUND: A fixed cavovarus foot deformity can be associated with anteromedial ankle arthrosis due to elevated medial joint contact stresses. Supramalleolar valgus osteotomies (SMOT) and lateralizing calcaneal osteotomies (LCOT) are commonly used to treat symptoms by redistributing joint contact forces. In a cavovarus model, the effects of SMOT and LCOT on the lateralization of the center of force (COF) and reduction of the peak pressure in the ankle joint were compared. METHODS: A previously published cavovarus model with fixed hindfoot varus was simulated in 10 cadaver specimens. Closing wedge supramalleolar valgus osteotomies 3 cm above the ankle joint level (6 and 11 degrees) and lateral sliding calcaneal osteotomies (5 and 10 mm displacement) were analyzed at 300 N axial static load (half body weight). The COF migration and peak pressure decrease in the ankle were recorded using high-resolution TekScan pressure sensors. RESULTS: A significant lateral COF shift was observed for each osteotomy: 2.1 mm for the 6 degrees (P = .014) and 2.3 mm for the 11 degrees SMOT (P = .010). The 5 mm LCOT led to a lateral shift of 2.0 mm (P = .042) and the 10 mm LCOT to a shift of 3.0 mm (P = .006). Comparing the different osteotomies among themselves no significant differences were recorded. No significant anteroposterior COF shift was seen. A significant peak pressure reduction was recorded for each osteotomy: The SMOT led to a reduction of 29% (P = .033) for the 6 degrees and 47% (P = .003) for the 11 degrees osteotomy, and the LCOT to a reduction of 41% (P = .003) for the 5 mm and 49% (P = .002) for the 10 mm osteotomy. Similar to the COF lateralization no significant differences between the osteotomies were seen. CONCLUSION: LCOT and SMOT significantly reduced anteromedial ankle joint contact stresses in this cavovarus model. The unloading effects of both osteotomies were equivalent. More correction did not lead to significantly more lateralization of the COF or more reduction of peak pressure but a trend was seen. CLINICAL RELEVANCE: In patients with fixed cavovarus feet, both SMOT and LCOT provided equally good redistribution of elevated ankle joint contact forces. Increasing the amount of displacement did not seem to equally improve the joint pressures. The site of osteotomy could therefore be chosen on the basis of surgeon's preference, simplicity, or local factors in case of more complex reconstructions.
Resumo:
OBJECTIVE To determine whether myocardial contrast echocardiography can be used to quantify collateral derived myocardial flow in humans. METHODS In 25 patients undergoing coronary angioplasty, a collateral flow index (CFI) was determined using intracoronary wedge pressure distal to the stenosis to be dilated, with simultaneous mean aortic pressure measurements. During balloon occlusion, echo contrast was injected into both main coronary arteries simultaneously. Echocardiography of the collateral receiving myocardial area was performed. The time course of myocardial contrast enhancement in images acquired at end diastole was quantified by measuring pixel intensities (256 grey units) within a region of interest. Perfusion variables, such as background subtracted peak pixel intensity and contrast transit rate, were obtained from a fitted gamma variate curve. RESULTS 16 patients had a left anterior descending coronary artery stenosis, four had a left circumflex coronary artery stenosis, and five had a right coronary artery stenosis. The mean (SD) CFI was 19 (12)% (range 0-47%). Mean contrast transit rate was 11 (8) seconds. In 17 patients, a significant collateral contrast effect was observed (defined as peak pixel intensity more than the mean + 2 SD of background). Peak pixel intensity was linearly related to CFI in patients with a significant contrast effect (p = 0.002, r = 0.69) as well as in all patients (p = 0.0003, r = 0.66). CONCLUSIONS Collateral derived perfusion of myocardial areas at risk can be demonstrated using intracoronary echo contrast injections. The peak echo contrast effect is directly related to the magnitude of collateral flow.
Resumo:
BACKGROUND Little is known about the vasomotor function of human coronary collateral vessels. The purpose of this study was to examine collateral flow under a strong sympathetic stimulus (cold pressor test, CPT). METHODS In 30 patients (62 +/- 12 years) with coronary artery disease, two subsequent coronary artery occlusions were performed with random CPT during one of them. Two minutes before and during the 1 minute-occlusion, the patient's hand was immerged in ice water. For the calculation of a perfusion pressure-independent collateral flow index (CFI), the aortic (Pao), the central venous (CVP) and the coronary wedge pressure (Poccl) were measured: CFI = (Poccl - CVP)/(Pao - CVP). RESULTS CPT lead to an increase in Pao from 98 +/- 14 to 105 +/- 15 mm Hg (p = 0.002). Without and with CPT, CFI increased during occlusion from 14% +/- 10% to 16% +/- 10% (p = 0.03) and from 17% +/- 9% to 19% +/- 9% (p = 0.006), respectively, relative to normal flow. During CPT, CFI was significantly higher at the beginning as well as at the end of the occlusion compared to identical instants without CPT. CFI at the end of the control occlusion did not differ significantly from the CFI at the beginning of occlusion with CPT. CONCLUSIONS During balloon occlusion, collateral flow increased due to collateral recruitment independent of external sympathetic stimulation. Sympathetic stimulation using CPT additionally augmented collateral flow. The collateral-flow-increasing effect of CPT is comparable to the recruitment effect of the occlusion itself. This may reflect a coronary collateral vasodilation mediated by the sympathetic nervous system.
Resumo:
Quantitative computer tomography (QCT)-based finite element (FE) models of vertebral body provide better prediction of vertebral strength than dual energy X-ray absorptiometry. However, most models were validated against compression of vertebral bodies with endplates embedded in polymethylmethalcrylate (PMMA). Yet, loading being as important as bone density, the absence of intervertebral disc (IVD) affects the strength. Accordingly, the aim was to assess the strength predictions of the classic FE models (vertebral body embedded) against the in vitro and in silico strengths of vertebral bodies loaded via IVDs. High resolution peripheral QCT (HR-pQCT) were performed on 13 segments (T11/T12/L1). T11 and L1 were augmented with PMMA and the samples were tested under a 4° wedge compression until failure of T12. Specimen-specific model was generated for each T12 from the HR-pQCT data. Two FE sets were created: FE-PMMA refers to the classical vertebral body embedded model under axial compression; FE-IVD to their loading via hyperelastic IVD model under the wedge compression as conducted experimentally. Results showed that FE-PMMA models overestimated the experimental strength and their strength prediction was satisfactory considering the different experimental set-up. On the other hand, the FE-IVD models did not prove significantly better (Exp/FE-PMMA: R²=0.68; Exp/FE-IVD: R²=0.71, p=0.84). In conclusion, FE-PMMA correlates well with in vitro strength of human vertebral bodies loaded via real IVDs and FE-IVD with hyperelastic IVDs do not significantly improve this correlation. Therefore, it seems not worth adding the IVDs to vertebral body models until fully validated patient-specific IVD models become available.
Resumo:
There are different views about the amount and timing of surface uplift in the Transantarctic Mountains and the geophysical mechanisms involved. Our new interpretation of the landscape evolution and tectonic history of the Dry Valleys area of the Transantarctic Mountains is based on geomorphic mapping of an area of 10,000 km(2). The landforms are dated mainly by their association with volcanic ashes and glaciomarine deposits and this permits a reconstruction of the stages and timing of landscape evolution. Following a lowering of base level about 55 m.y. ago, there was a phase of rapid denudation associated with planation and escarpment retreat, probably under semiarid conditions. Eventually, downcutting by rivers, aided in places by glaciers, graded valleys to near present sea level. The main valleys were flooded by the sea in the Miocene during a phase of subsidence before experiencing a final stage of modest upwarping near the coast. There has been remarkably little landform change under the stable, cold, polar conditions of the last 15 m.y. It is difficult to explain the Sirius Group deposits, which occur at high elevations in the area, if they are Pliocene in age. Overall, denudation may have removed a wedge of rock with a thickness of over 4 km at the coast declining to 1 km at a point 75 km inland, which is in good agreement with the results of existing apatite fission track analyses. It is suggested that denudation reflects the differences in base level caused by high elevation at the time of extension due to underplating and the subsequent role of thermal uplift and flexural isostasy. Most crustal uplift (2-4 km) is inferred to have occurred in the early Cenozoic with 400 m of subsidence in the Miocene followed by 300 m of uplift in the Pliocene.