993 resultados para above CO2-plume


Relevância:

20.00% 20.00%

Publicador:

Resumo:

预测下世纪中叶,大气CO_2浓度将高到目前的两倍(即达到700μ1•1~(-1))。CO_2倍增对植物地上部的影响已经有了较多的研究,胆是由于方法学上的困难,至今关于倍增CO_2对植物根及根区微生物的研究仍是非常匮乏。本文应用国际上最新的根研究方法,以根系为中心,研究开顶式CO_2C熏蒸培养室中,CO_2倍增条件下根系与地上部,根系与根区微生物[共生的泡囊-丛枝菌根(VAM)真菌,非共生的土壤微生物]的关系。 1. CO_2倍增对根系的影响目前CO_2倍增对根系影响的研究多集中在根生物量的测定,或根/冠比值的测定,而善于其它参数如根长度则很少涉及,而根表面的反应目前还未见文献报道。本实验以幼苗期小麦“青323”(Triticum aestivum)、水稻“中作 29”(Oryza sativa)、大豆“科农4号”(Glycine max)、玉米“农大3138”(Zea mays)、甜高粱“M-81E”(Sorghum saccharatum)为材料,研究CO_2倍增对植物生物量的影响,发现CO_2倍增使C_3植物水稻、大豆的地上部、根系干重均显著增加,使小麦的根系干重显著增加,地上部无显著差异;C_4植物玉米和甜高粱的地上部和根系均没有显著反应。植物干重反应资料表明在光合产物的分配方面,C_3和C_4植物之间存在巨大的差异。 为了解根系获取土壤资源的能力的变化,我们对根系总长度和总表面积进行了分析。用样格交叉法研究根系长度的变化,结果显示,幼苗期的小麦、大豆的根系长度均被显著促进,尤其值得注意的是,尽管玉米根系干重没有显著改变,但是根长度已发生显著变化。同时应用研究根系表面积的最新方法-Na NO_2吸附法,研究发现幼苗期小麦、水稻和大豆的根系表面积在CO_2倍增条件下均显著增加,C_4植物玉米的根表面积亦有显著增加,但甜高粱的根表面积却没有显著反应,这说明即使在C_4植物类型中,根系表面积的反应在不同物种间仍存在很大差异。由于根长度和根表面积增幅大于根干重的增幅,所以推断在CO_2倍增条件下,植物根系细根比例增加,这有利于植物获取更多的养分。由于不同植物之间根系的反应不同,这将改变群落中原有的根系竞争关系,从而影响群落中物种的组成。 2. CO_2倍增对VAM真菌侵染强度和活力的影响本文应用NBT染色法,并结合浸染强度等级和活力等级标准,首次对CO_2倍增条件下,植物VAM真菌的侵染强度和活力的变化进行了检测。对比常规的酸性品红乳酸甘油法和NBT法,发现两者在显示侵染强度时元显著差异,但后者能同时用于侵染活力等级的研究。对幼苗期大豆以及不同生长期的小麦和玉米根系VAM真菌的侵染强度和活力进行观测,结果显示,倍增CO_2对大豆的侵染强度和活力均没有显著效应;使幼苗期玉米的侵染强度显著增加,但侵染活力无显著差异,但随生长期的推移,侵染强度所受的CO_2倍增效应逐渐减小,与14天苗龄(DAP)和35DAP相比,侵染活力在22DAP时所受效应最大;使10DAP小麦的VAM侵染强度和活力均显著增加,而且这种效应在30DAP小麦中的表现与10DAP小麦的相同。说明C_3、C_4植物中,菌根真菌对CO_2倍增反应不同,这也许是C_3、C_4植物对CO_2倍增反应不同的原因之一。倍增CO_2改善了VAM真菌的发育,所以较之于非菌根侵染植物,菌根侵染植物将因为CO_2倍增而获益更多,另一方面不同种植物中,VAM真菌的发育反应不同,这将使植物群落中,根系获取无机营养的竞争能力发生变化,最终影响植物群落的物种丰度和生物多样性以及群落的演替。 3. CO_2倍增对非共生土壤微生物的影响CO_2倍增使生长70天的小麦、垂柳(Salix babylonica)、藜(Chenopodium album)、繁穗苋(Amaranthus cruentus)品种“红苋K112”的地上部和根系的生物量增加。以这些植物所在土壤为材料,用氯仿熏蒸直接提取法研究土壤微生物生物量C(C_(mic))和生物量N(N_(mic))的变化,发现CO_2倍增尽管使各类型植物的C_4植物)土壤中C_(mic)的变化趋势不完全相同(小麦和藜所在土壤的C_(mic)下降,垂柳中C_(mic)升高,而在繁穗苋中无显著差异),但N_(mic)在各物种所在土壤中均有不同程度的上升,在繁穗苋中增幅最大。C_(mic):N_(mic)比值在4个物种所在土壤中均明显下降,这意味着CO_2倍增后在植物生长后期,土壤微生物活性提高,分解植物凋落物和土壤中其它有机质的能力加强,从而改善贫瘠土壤中有机质质量。 4.CO_2倍增对植物呼吸和光合作用及C素积累的影响 1)CO_2倍增对植物暗呼吸的影响:以杜仲(Eucommia ulmoides)、紫花苜蓿(Medicago sativa)和玉米等10种植物的离体成熟叶片或整株为材料,研究不同测定温度(15~35 ℃)下,CO_2倍增对植物暗呼吸的影响。结果表明:在较低温度(15 ℃、20 ℃)下,CO_2倍增对植物暗呼吸没有显著效应;在较高温度(30 ℃、35 ℃)时,多数被测植物的暗呼吸显著增强。由于植物在不同温度时它们的暗咱吸受CO_2倍增的促进幅度不同,这将导致不同地区(环境温度不同)的植物暗呼吸反应有差异,而且由于不同物种的暗呼吸增幅不同,综合光合效应,它们的生物量的反应也会不同。 2)CO_2倍增对整株植物的CO_2气体交换及植物C素积累的影响:利用自行设计的一套CO_2气体测定装置,首次尝试同步测定CO_2倍增条件下幼苗期小麦地下部和地上部的气体交换在昼夜24小时内的变化及C素的积累。发现CO_2倍增不仅使小麦地上部C素的积累增加,也使地下部释放的C素增加,但整株植物的C素收入仍高于对照两倍多,这从植物与环境的CO_2气体交换角度为CO_2倍增促进植物生物量的增加提供了依据。并首次提出:植物的整体性及植物所在的环境条件(主要是温度和光照强度)决定着植物暗呼吸对CO_2倍增的响应方式:被抑制或无效应。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The inability of emissions reduction methods to meet upcoming legislation without an unacceptable increase in vehicle cost is a major problem of automobile manufacturer. This work aims to develop a cost-effective reduction of automobile emissions. A prototype CO2 sensor with 5 msec response time was built and bench tested, then used on an engine. The sensor design was based on standard emissions measurement technology using non-dispersive IR absorption. An improved sensor has now been completed with significant improvements in terms of signal to noise ratio and long-term stability. The improved sensor will be used to measure CO2 concentrations on three different engines. The results will then be used to validate engine and catalyst models and to propose control strategies aimed at reducing overall emissions. A brief description of the sensor itself was presented. Original is an abstract.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During high-power continuous wave (cw) Nd:yttritium-aluminum-garnet (YAG) laser welding a vapor plume is formed containing vaporized material ejected from the keyhole. The gas used as a plume control mechanism affects the plume shape but not its temperature, which has been found to be less than 3000 K, independent of the atmosphere and plume control gases. In this study high-power (up to 8 kW) cw Nd:YAG laser welding has been performed under He, Ar, and N2 gas atmospheres, extending the power range previously studied. The plume was found to contain very small evaporated particles of diameter less than 50 nm. Rayleigh and Mie scattering theories were used to calculate the attenuation coefficient of the incident laser power by these small particles. In addition the attenuation of a 9 W Nd:YAG probe laser beam, horizontally incident across the plume generated by the high-power Nd:YAG laser, was measured at various positions with respect to the beam-material interaction point. Up to 40% attenuation of the probe laser power was measured at positions corresponding to zones of high concentration of vapor plume, shown by high-speed video measurements. These zones interact with the high-power Nd:YAG laser beam path and, can result in significant laser power attenuation. © 2004 Laser Institute of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Targets to cut 2050 CO2 emissions in the steel and aluminium sectors by 50%, whilst demand is expected to double, cannot be met by energy efficiency measures alone, so options that reduce total demand for liquid metal production must also be considered. Such reductions could occur through reduced demand for final goods (for instance by life extension), reduced demand for material use in each product (for instance by lightweight design) or reduced demand for material to make existing products. The last option, improving the yield of manufacturing processes from liquid metal to final product, is attractive in being invisible to the final customer, but has had little attention to date. Accordingly this paper aims to provide an estimate of the potential to make existing products with less liquid metal production. Yield ratios have been measured for five case study products, through a series of detailed factory visits, along each supply chain. The results of these studies, presented on graphs of cumulative energy against yield, demonstrate how the embodied energy in final products may be up to 15 times greater than the energy required to make liquid metal, due to yield losses. A top-down evaluation of the global flows of steel and aluminium showed that 26% of liquid steel and 41% of liquid aluminium produced does not make it into final products, but is diverted as process scrap and recycled. Reducing scrap substitutes production by recycling and could reduce total energy use by 17% and 6% and total CO 2 emissions by 16% and 7% for the steel and aluminium industries respectively, using forming and fabrication energy values from the case studies. The abatement potential of process scrap elimination is similar in magnitude to worldwide implementation of best available standards of energy efficiency and demonstrates how decreasing the recycled content may sometimes result in emission reductions. Evidence from the case studies suggests that whilst most companies are aware of their own yield ratios, few, if any, are fully aware of cumulative losses along their whole supply chain. Addressing yield losses requires this awareness to motivate collaborative approaches to improvement. © 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three spatial structure groups of radionuclides in U and Th series, 210Pb-excess and 137Cs, and 40K were found based on analyzing temporal and spatial datum of their content by factor analysis with oblique rotation in Nhatrang bay. U and Th spatial structure with their contours decreased toward the offshore, ran longshore and divided seawater of bay into two parts with strong gradient on both sides. Inside part located from center of Nhatrang bay toward the seashore with three main deposit centers of their contents higher than 23 Bq/kg.dry for 238U and 40 Bq/kg.dry for 232Th, indicated unstability of shoreline. Almost sediments coming from river extended toward the offshore, were stopped and transported toward southeastern. The outside part was less than above mentioned content. The boundary line between two parts superposed with the constantly limit line of turbid plume in the rainy season. Direct influence of the continental runoff was limited by the 9 Bq/kg.dry contour of 238U, 19 Bq/kg.dry contour of 232Th. Longshore current was a predominant process whereas lateral transport as sifting and winnowing process of finer grains in sediments of Nhatrang bay. Areas that had very low content of 137Cs and 210 Pb-excess adjoining shoreline showed areas being eroded. Accumulation of 137Cs and 210 Pbexcess nearby river mouth characterized for fine compositions of sediments controlled by seasonal plumes and sites further toward the south indicated finer materials transported from river and accumulated in lack of hydrodynamic process. Near shore accumulation of 40K revealed the sediments there originated from bed erosion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examines the kinetics of carbonation by CO2 at temperatures of ca. 750 °C of a synthetic sorbent composed of 15 wt% mayenite (Ca12Al14O33) and CaO, designated HA-85-850, and draws comparisons with the carbonation of a calcined limestone. In-situ XRD has verified the inertness of mayenite, which neither interacts with the active CaO nor does it significantly alter the CaO carbonation–calcination equilibrium. An overlapping grain model was developed to predict the rate and extent of carbonation of HA-85-850 and limestone. In the model, the initial microstructure of the sorbent was defined by a discretised grain size distribution, assuming spherical grains. The initial input to the model – the size distribution of grains – was a fitted parameter, which was in good agreement with measurements made with mercury porosimetry and by the analysis of SEM images of sectioned particles. It was found that the randomly overlapping spherical grain assumption offered great simplicity to the model, despite its approximation to the actual porous structure within a particle. The model was able to predict the performance of the materials well and, particularly, was able to account for changes in rate and extent of reaction as the structure evolved after various numbers of cycles of calcination and carbonation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study a 5-step reduced chemical kinetic mechanism involving nine species is developed for combustion of Blast Furnace Gas (BFG), a multi-component fuel containing CO/H2/CH4/CO2, typically with low hydrogen, methane and high water fractions, for conditions relevant for stationary gas-turbine combustion. This reduced mechanism is obtained from a 49-reaction skeletal mechanism which is a modified subset of GRI Mech 3.0. The skeletal and reduced mechanisms are validated for laminar flame speeds, ignition delay times and flame structure with available experimental data, and using computational results with a comprehensive set of elementary reactions. Overall, both the skeletal and reduced mechanisms show a very good agreement over a wide range of pressure, reactant temperature and fuel mixture composition. © 2012 The Combustion Institute..

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chemical looping combustion (CLC) is a novel combustion technology that involves cyclic reduction and oxidation of oxygen storage materials to provide oxygen for the combustion of fuels to CO2 and H2O, whilst giving a pure stream of CO2 suitable for sequestration or utilisation. Here, we report a method for preparing of oxygen storage materials from layered double hydroxides (LDHs) precursors and demonstrate their applications in the CLC process. The LDHs precursor enables homogeneous mixing of elements at the molecular level, giving a high degree of dispersion and high-loading of active metal oxide in the support after calcination. Using a Cu-Al LDH precursor as a prototype, we demonstrate that rational design of oxygen storage materials by material chemistry significantly improved the reactivity and stability in the high temperature redox cycles. We discovered that the presence of sodium-containing species were effective in inhibiting the formation of copper aluminates (CuAl2O4 or CuAlO 2) and stabilising the copper phase in an amorphous support over multiple redox cycles. A representative nanostructured Cu-based oxygen storage material derived from the LDH precursor showed stable gaseous O2 release capacity (∼5 wt%), stable oxygen storage capacity (∼12 wt%), and stable reaction rates during reversible phase changes between CuO-Cu 2O-Cu at high temperatures (800-1000 °C). We anticipate that the strategy can be extended to manufacture a variety of metal oxide composites for applications in novel high temperature looping cycles for clean energy production and CO2 capture. © The Royal Society of Chemistry 2013.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The law for turbulent entrainment due to plumes and jets impinging on a density interface is subject to significant uncertainty, with reported differences in entrainment rates up to a factor of 10. We report preliminary results obtained by Direct Numerical Simulation which are part of a PRACE project on turbulent entrainment carried out on JUGENE at Jülich, Germany. Various interface tracking methods are discussed and the entrainment coefficient is determined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our recent efforts of using large-eddy simulation (LES) type methods to study complex and realistic geometry single stream and co-flow nozzle jets and acoustics are summarized in this paper. For the LES, since the solver being used tends towards having dissipative qualities, the subgrid scale (SGS) model is omitted, giving a numerical type LES (NLES). To overcome near wall streak resolution problems a near wall RANS (Reynolds averaged Navier-Stokes) model is smoothly blended in the LES making a hybrid RANS-NLES approach. Several complex nozzle geometries including the serrated (chevron) nozzle, realistic co-axial nozzles with eccentricity, pylon and wing-flap are discussed. The hybrid RANS-NLES simulations show encouraging predictions for the chevron jets. The chevrons are known to increase the high frequency noise at high polar angles, but decrease the low frequency noise at lower angles. The deflection effect of the potential core has an important mechanism of noise reduction. As for co-axial nozzles, the eccentricity, the pylon and the deployed wing-flap are shown to influence the flow development, especially the former to the length of potential core and the latter two having a significant impact on peak turbulence levels and spreading rates. The studies suggest that complex and real geometry effects are influential and should be taken into count when moving towards real engine simulations. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Identifying strategies for reducing greenhouse gas emissions from steel production requires a comprehensive model of the sector but previous work has either failed to consider the whole supply chain or considered only a subset of possible abatement options. In this work, a global mass flow analysis is combined with process emissions intensities to allow forecasts of future steel sector emissions under all abatement options. Scenario analysis shows that global capacity for primary steel production is already near to a peak and that if sectoral emissions are to be reduced by 50% by 2050, the last required blast furnace will be built by 2020. Emissions reduction targets cannot be met by energy and emissions efficiency alone, but deploying material efficiency provides sufficient extra abatement potential.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increasing demand for energy and continuing increase in environmental as well as financial cost of use of fossil fuels drive the need for utilization of fuels from sustainable sources for power generation. Development of fuel-flexible combustion systems is vital in enabling the use of sustainable fuels. It is also important that these sustainable combustion systems meet the strict governmental emission legislations. Biogas is considered as one of the viable sustainable fuels that can be used to power modern gas turbines: However, the change in chemical, thermal and transport properties as well as change in Wobbe index due to the variation of the fuel constituents can have a significant effect on the performance of the combustor. It is known that the fuel properties have strong influence on the dynamic flame response; however there is a lack of detailed information regarding the effect of fuel compositions on the sensitivity of the flames subjected to flow perturbations. In this study, we describe an experimental effort investigating the response of premixed biogas-air turbulent flames with varying proportions of CH4 and CO2 to velocity perturbations. The flame was stabilized using a centrally placed conical bluff body. Acoustic perturbations were imposed to the flow using loud speakers. The flame dynamics and the local heat release rate of these acoustically excited biogas flames were studied using simultaneous measurements of OH and H2CO planar laser induced fluorescence. OH* chemiluminescence along with acoustic pressure measurements were also recorded to estimate the total flame heat release modulation and the velocity fluctuations. The measurements were carried out by keeping the theoretical laminar flame speed constant while varying the bulk velocity and the fuel composition. The results indicate that the flame sensitivity to perturbations increased with increased dilution of CH4 by CO2 at low amplitude forcing, while at high amplitude forcing conditions the magnitude of the flame response was independent of dilution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A fast response sensor for measuring carbon dioxide concentration has been developed for laboratory research and tested on a spark ignition engine. The sensor uses the well known infra-red absorption technique with a miniaturized detection system and short capillary sampling tubes, giving a time constant of approximately 5 milliseconds; this is sufficiently fast to observe changes in CO2 levels on a cycle-by-cycle basis under normal operating conditions. The sensor is easily located in the exhaust system and operates continuously. The sensor was tested on a standard production four cylinder spark-ignition engine to observe changes in CO2 concentration in exhaust gas under steady state and transient operating conditions. The processed sensor signal was compared to a standard air-to-fuel ratio (AFR) sensor in the exhaust stream and the results are presented here. The high frequency response CO2 measurements give new insights into both engine and catalyst transient operation. Copyright © 1999 Society of Automotive Engineers, Inc.