965 resultados para ZN-65
Resumo:
Water Research, 40 14 (2006) 2645.
Resumo:
A simple V-band radio IQ receiver architecture based around a six-port monolithic microwave integrated circuit (MMIC) is presented. The receiver assembly is designed to cover the 57-65 GHz broadband wireless communication system frequency allocation. The receiver that has an integral 10 dB microstrip antenna consumes 120 mW of dc power and occupies an area of 23 mm x 16 mm. The receiver can be used in heterodyne or in homodyne mode and has the capacity to demodulate quadrature amplitude modulation (QAM), binary phase shift keying (BPSK)/quadrature phase shift keying (QPSK)/offset quadrature phase shift keying (OQPSK). At 60 GHz the receiver can operate over 10 m range for transmitter effective isotropic radiated power (EIRP) of 20 dBm.
Resumo:
Samples of Zn/H-ZSM-5 zeolite were prepared by impregnation of the parent zeolite with Zn(NO3)(2). The state of zinc in the samples was analyzed by XPS measurements, (ald the degree of reduction for the zinc oxide on the ZSM-5 zeolite surface in hydrogen atmosphere was determined, as well as the influence of this reducing treatment upon the activity and selectivity for aromatics of zeolites in aromatization of cyclohexane. It resulted that the degree of reduction depends on the concentration of zinc in the zeolite and is influenced by the presence of alumina binder. The results of the activity and selectivity to aromatics were correlated with the reduction of zinc oxide.
Resumo:
We have studied the effect of prepulses in enhancing the efficiency of generating ASE beams in soft X-ray laser plasma amplifiers based on pumping Ne-like ions, Slab targets were irradiated with a weak prepulse followed by a main plasma heating pulse of nanosecond duration, Time-integrated; time and spectrally resolved and time and angularly resolved lasing emissions on the 3p-3s (J=0-1) XUV lasing lines of Ne-like Ni, Cu and Zn at wavelengths 232 Angstrom 221 Angstrom and 212 Angstrom respectively have been monitored. Measurements were made for pre-pulse/main-pulse intensity ratios from 10(-5)-10(-1) and for pump delay times of 2 ns and 4.5 ns. Zinc is shown to exhibit a peak in output intensity at similar to 2x10(-3) pre-pulse fraction for a 4.5 ns pump delay, with a main pulse pump intensity of similar to 1.3x10(13) W cm(-2) on a 20 mm target. The Zn lasing emission had a duration of similar to 240 ps and this was insensitive to prepulse fraction. The J=0-1 XUV laser output for nickel and copper increased monotonically with prepulse fraction, with copper targets showing least sensitivity to either prepulse level or prepulse to main pulse delay. Under the conditions of the study, the pre-pulse level was observed to haveno significant influence on the output intensity of the 3p-3s (J=2-1) lines of any of the elements investigated.
Resumo:
DGT (diffusive gradients in thin-films) has been proposed as a tool for predicting Cd concentrations in rice grain, but there is a lack of authenticating data. To further explore the relationship between DGT measured Cd and concentrations in rice cultivated in challenging, metal degraded, field locations with different heavy metal pollutant sources, 77 paired soil and grain samples were collected in Southern China from industrial zones, a "cancer village" impacted by mining waste and an organic farm. In situ deployments of DGT in flooded paddy rice rhizospheres were compared with a laboratory DGT assay on dried and rewetted soil. Total soil concentrations were a very poor predictor of plant uptake. Laboratory and field deployed DGT assays and porewater measurements were linearly related to grain concentrations in all but the most contaminated samples where plant toxicity occurred. The laboratory DGT assay was the best predictor of grain Cd concentrations, accommodating differences in soil Cd, pollutant source, and Cd:Zn ratios. Field DGT measurements showed that Zn availability in the flooded rice rhizospheres was greatly diminished compared to that of Cd, resulting in very high Cd:Zn ratios (0.1) compared to commonly observed values (0.005). These results demonstrate the potential of the DGT technique to predict Cd concentrations in field cultivated rice and demonstrate its robustness in a range of environments. Although, field deployments provided important details about in situ element stoichiometry, due to the inherent heterogeneity of the rice rhizosphere soils, deployment of DGT in dried and homogenized soils offers the best possibility of a soil screening tool.
Resumo:
The technique of diffusive gradients in thin films (DGT) is often employed to quantify labile metals in situ; however, it is a challenge to perform the measurements in-field. This study evaluated the capability of field-portable X-ray fluorescence (FP-XRF) to swiftly generate elemental speciation information with DGT. Biologically available metal ions in environmental samples passively preconcentrate in the thin films of DGT devices, providing an ideal and uniform matrix for XRF nondestructive detection. Strong correlation coefficients (r > 0.992 for Mn, Cu, Zn, Pb and As) were obtained for all elements during calibration. The limits of quantitation (LOQ) for the investigated elements of FP-XRF on DGT devices are 2.74 for Mn, 4.89 for Cu, 2.89 for Zn, 2.55 for Pb, and 0.48 for As (unit: µg cm(-2)). When Pb and As co-existed in the solution trials, As did not interfere with Pb detection when using Chelex-DGT. However, there was a significant enhancement of the Pb reading attributed to As when ferrihydrite binding gels were tested, consistent with Fe-oxyhydroxide surfaces absorbing large quantities of As. This study demonstrates the value of the FP-XRF technique to rapidly and nondestructively detect the metals accumulated in DGT devices, providing a new and simple diagnostic tool for on-site environmental monitoring of labile metals/metalloids