562 resultados para Workflow


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Image overlay projection is a form of augmented reality that allows surgeons to view underlying anatomical structures directly on the patient surface. It improves intuitiveness of computer-aided surgery by removing the need for sight diversion between the patient and a display screen and has been reported to assist in 3-D understanding of anatomical structures and the identification of target and critical structures. Challenges in the development of image overlay technologies for surgery remain in the projection setup. Calibration, patient registration, view direction, and projection obstruction remain unsolved limitations to image overlay techniques. In this paper, we propose a novel, portable, and handheld-navigated image overlay device based on miniature laser projection technology that allows images of 3-D patient-specific models to be projected directly onto the organ surface intraoperatively without the need for intrusive hardware around the surgical site. The device can be integrated into a navigation system, thereby exploiting existing patient registration and model generation solutions. The position of the device is tracked by the navigation system’s position sensor and used to project geometrically correct images from any position within the workspace of the navigation system. The projector was calibrated using modified camera calibration techniques and images for projection are rendered using a virtual camera defined by the projectors extrinsic parameters. Verification of the device’s projection accuracy concluded a mean projection error of 1.3 mm. Visibility testing of the projection performed on pig liver tissue found the device suitable for the display of anatomical structures on the organ surface. The feasibility of use within the surgical workflow was assessed during open liver surgery. We show that the device could be quickly and unobtrusively deployed within the sterile environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

STEPanizer is an easy-to-use computer-based software tool for the stereological assessment of digitally captured images from all kinds of microscopical (LM, TEM, LSM) and macroscopical (radiology, tomography) imaging modalities. The program design focuses on providing the user a defined workflow adapted to most basic stereological tasks. The software is compact, that is user friendly without being bulky. STEPanizer comprises the creation of test systems, the appropriate display of digital images with superimposed test systems, a scaling facility, a counting module and an export function for the transfer of results to spreadsheet programs. Here we describe the major workflow of the tool illustrating the application on two examples from transmission electron microscopy and light microscopy, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Simulation is an important resource for researchers in diverse fields. However, many researchers have found flaws in the methodology of published simulation studies and have described the state of the simulation community as being in a crisis of credibility. This work describes the project of the Simulation Automation Framework for Experiments (SAFE), which addresses the issues that undermine credibility by automating the workflow in the execution of simulation studies. Automation reduces the number of opportunities for users to introduce error in the scientific process thereby improvingthe credibility of the final results. Automation also eases the job of simulation users and allows them to focus on the design of models and the analysis of results rather than on the complexities of the workflow.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spine Tango is currently the only international spine registry in existence. It was developed under the auspices of Eurospine, the Spine Society of Europe, and is hosted at the University of Bern, Switzerland. The HJD Spine Center successfully tested Spine Tango during a 3-month pilot study and has since expanded documentation activities to more surgeons. Workflow integration and dedicated research staff are key factors for such an endeavor. Participation enables benchmarking against national and international peers and outcome research and quality assurance of surgical and non-surgical treatments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Simulation Automation Framework for Experiments (SAFE) streamlines the de- sign and execution of experiments with the ns-3 network simulator. SAFE ensures that best practices are followed throughout the workflow a network simulation study, guaranteeing that results are both credible and reproducible by third parties. Data analysis is a crucial part of this workflow, where mistakes are often made. Even when appearing in highly regarded venues, scientific graphics in numerous network simulation publications fail to include graphic titles, units, legends, and confidence intervals. After studying the literature in network simulation methodology and in- formation graphics visualization, I developed a visualization component for SAFE to help users avoid these errors in their scientific workflow. The functionality of this new component includes support for interactive visualization through a web-based interface and for the generation of high-quality, static plots that can be included in publications. The overarching goal of my contribution is to help users create graphics that follow best practices in visualization and thereby succeed in conveying the right information about simulation results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Genotyping platforms such as Affymetrix can be used to assess genotype-phenotype as well as copy number-phenotype associations at millions of markers. While genotyping algorithms are largely concordant when assessed on HapMap samples, tools to assess copy number changes are more variable and often discordant. One explanation for the discordance is that copy number estimates are susceptible to systematic differences between groups of samples that were processed at different times or by different labs. Analysis algorithms that do not adjust for batch effects are prone to spurious measures of association. The R package crlmm implements a multilevel model that adjusts for batch effects and provides allele-specific estimates of copy number. This paper illustrates a workflow for the estimation of allele-specific copy number, develops markerand study-level summaries of batch effects, and demonstrates how the marker-level estimates can be integrated with complimentary Bioconductor software for inferring regions of copy number gain or loss. All analyses are performed in the statistical environment R. A compendium for reproducing the analysis is available from the author’s website (http://www.biostat.jhsph.edu/~rscharpf/crlmmCompendium/index.html).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Geospatial information systems are used to analyze spatial data to provide decision makers with relevant, up-to-date, information. The processing time required for this information is a critical component to response time. Despite advances in algorithms and processing power, we still have many “human-in-the-loop” factors. Given the limited number of geospatial professionals, analysts using their time effectively is very important. The automation and faster humancomputer interactions of common tasks that will not disrupt their workflow or attention is something that is very desirable. The following research describes a novel approach to increase productivity with a wireless, wearable, electroencephalograph (EEG) headset within the geospatial workflow.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The generic approach of the Spine Tango documentation system, which uses web-based technologies, is a necessity for reaching a maximum number of participants. This, in turn, reduces the potential for customising the Tango according to the individual needs of each user. However, a number of possibilities still exist for tailoring the data collection processes to the user's own hospital workflow. One can choose between a purely paper-based set-up (with in-house scanning, data punching or mailing of forms to the data centre at the University of Bern) and completely paper-free online data entry. Many users work in a hybrid mode with online entry of surgical data and paper-based recording of the patients' perspectives using the Core Outcome Measures Index (COMI) questionnaires. Preoperatively, patients can complete their questionnaires in the outpatient clinic at the time of taking the decision about surgery or simply at the time of hospitalisation. Postoperative administration of patient data can involve questionnaire completion in the outpatient clinic, the handing over the forms at the time of discharge for their mailing back to the hospital later, sending out of questionnaires by post with a stamped addressed envelope for their return or, in exceptional circumstances, conducting telephone interviews. Eurospine encourages documentation of patient-based information before the hospitalisation period and surgeon-based information both before and during hospitalisation; both patient and surgeon data should be acquired for at least one follow-up, at a minimum of three to six months after surgery. In addition, all complications that occur after discharge, and their consequences should be recorded.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Das Interesse an Online-Vorlesungen, -Vorträgen oder -Präsentationen für E-Learning hat deutlich zugenommen. Hierfür gibt es eine Reihe von Gründen, die mit neuen Formen der Produktion und Distribution von Online-Vorlesungen zusammenhängen. Mit der Verfügbarkeit von Rapid-Authoring-Werkzeugen wird der Workflow für die Erstellung und den Einsatz von Online-Vorlesungen erleichtert und flexibilisiert. Hierbei ist zu beobachten, dass durch die Vielzahl der Möglichkeiten im Workflow zunehmend individuelle Rahmenbedingungen und Anforderungen berücksichtigt werden können. Der folgende Beitrag beschreibt diese Veränderungen. Er fasst die Optionen im Prozess der Produktion und Distribution von Online-Vorträgen im Internet zusammen. Ein solcher Überblick über das Themengebiet ist erforderlich für das Herausarbeiten eines individuellen Workflows. Hierzu werden Entscheidungskriterien für die Auswahl von Werkzeugen und Plattformen dargestellt und die mediendidaktischen Implikationen diskutiert.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Die voranschreitende Entwicklung von Konzepten und Systemen zur Nutzung digitaler Informationen im industriellen Umfeld eröffnet verschiedenste Möglichkeiten zur Optimierung der Informationsverarbeitung und damit der Prozesseffektivität und -effizienz. Werden die relevanten Daten zu Produkten oder Prozessen jedoch lediglich in digitaler Form zur Verfügung gestellt, fällt ein Eingriff des Menschen in die virtuelle Welt immer schwerer. Auf Grundlage dessen wird am Beispiel der RFIDTechnologie dargestellt, inwiefern digitale Informationen durch die Verwendung von in den Arbeitsablauf integrierten Systemen für den Menschen nutzbar werden. Durch die Entwicklung eines Systems zur papierlosen Produktion und Logistik werden exemplarisch Einsatzszenarien zur Unterstützung des Mitarbeiters in Montageprozessen sowie zur Vermeidung von Fehlern in der Kommissionierung aufgezeigt. Dazu findet neben einer am Kopf getragenen Datenbrille zur Visualisierung der Informationen ein mobiles RFID-Lesegerät Anwendung, mit Hilfe dessen die digitalen Transponderdaten ohne zusätzlichen Aufwand für den Anwender genutzt werden können.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present an optimized multilocus sequence typing (MLST) scheme with universal primer sets for amplifying and sequencing the seven target genes of Campylobacter jejuni and Campylobacter coli. Typing was expanded by sequence determination of the genes flaA and flaB using optimized primer sets. This approach is compatible with the MLST and flaA schemes used in the PubMLST database and results in an additional typing method using the flaB gene sequence. An identification module based on the 16S rRNA and rpoB genes was included, as well as the genetic determination of macrolide and quinolone resistances based on mutations in the 23S rRNA and gyrA genes. Experimental procedures were simplified by multiplex PCR of the 13 target genes. This comprehensive approach was evaluated with C. jejuni and C. coli isolates collected in Switzerland. MLST of 329 strains resulted in 72 sequence types (STs) among the 186 C. jejuni strains and 39 STs for the 143 C. coli isolates. Fourteen (19%) of the C. jejuni and 20 (51%) of the C. coli STs had not been found previously. In total, 35% of the C. coli strains collected in Switzerland contained mutations conferring antibiotic resistance only to quinolone, 15% contained mutations conferring resistance only to macrolides, and 6% contained mutations conferring resistance to both classes of antibiotics. In C. jejuni, these values were 31% and 0% for quinolone and macrolide resistance, respectively. The rpoB sequence allowed phylogenetic differentiation between C. coli and C. jejuni, which was not possible by 16S rRNA gene analysis. An online Integrated Database Network System (SmartGene, Zug, Switzerland)-based platform for MLST data analysis specific to Campylobacter was implemented. This Web-based platform allowed automated allele and ST designation, as well as epidemiological analysis of data, thus streamlining and facilitating the analysis workflow. Data networking facilitates the exchange of information between collaborating centers. The described approach simplifies and improves the genotyping of Campylobacter, allowing cost- and time-efficient routine monitoring.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quantitative data obtained by means of design-based stereology can add valuable information to studies performed on a diversity of organs, in particular when correlated to functional/physiological and biochemical data. Design-based stereology is based on a sound statistical background and can be used to generate accurate data which are in line with principles of good laboratory practice. In addition, by adjusting the study design an appropriate precision can be achieved to find relevant differences between groups. For the success of the stereological assessment detailed planning is necessary. In this review we focus on common pitfalls encountered during stereological assessment. An exemplary workflow is included, and based on authentic examples, we illustrate a number of sampling principles which can be implemented to obtain properly sampled tissue blocks for various purposes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ABSTRACT ONTOLOGIES AND METHODS FOR INTEROPERABILITY OF ENGINEERING ANALYSIS MODELS (EAMS) IN AN E-DESIGN ENVIRONMENT SEPTEMBER 2007 NEELIMA KANURI, B.S., BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCES PILANI INDIA M.S., UNIVERSITY OF MASSACHUSETTS AMHERST Directed by: Professor Ian Grosse Interoperability is the ability of two or more systems to exchange and reuse information efficiently. This thesis presents new techniques for interoperating engineering tools using ontologies as the basis for representing, visualizing, reasoning about, and securely exchanging abstract engineering knowledge between software systems. The specific engineering domain that is the primary focus of this report is the modeling knowledge associated with the development of engineering analysis models (EAMs). This abstract modeling knowledge has been used to support integration of analysis and optimization tools in iSIGHT FD , a commercial engineering environment. ANSYS , a commercial FEA tool, has been wrapped as an analysis service available inside of iSIGHT-FD. Engineering analysis modeling (EAM) ontology has been developed and instantiated to form a knowledge base for representing analysis modeling knowledge. The instances of the knowledge base are the analysis models of real world applications. To illustrate how abstract modeling knowledge can be exploited for useful purposes, a cantilever I-Beam design optimization problem has been used as a test bed proof-of-concept application. Two distinct finite element models of the I-beam are available to analyze a given beam design- a beam-element finite element model with potentially lower accuracy but significantly reduced computational costs and a high fidelity, high cost, shell-element finite element model. The goal is to obtain an optimized I-beam design at minimum computational expense. An intelligent KB tool was developed and implemented in FiPER . This tool reasons about the modeling knowledge to intelligently shift between the beam and the shell element models during an optimization process to select the best analysis model for a given optimization design state. In addition to improved interoperability and design optimization, methods are developed and presented that demonstrate the ability to operate on ontological knowledge bases to perform important engineering tasks. One such method is the automatic technical report generation method which converts the modeling knowledge associated with an analysis model to a flat technical report. The second method is a secure knowledge sharing method which allocates permissions to portions of knowledge to control knowledge access and sharing. Both the methods acting together enable recipient specific fine grain controlled knowledge viewing and sharing in an engineering workflow integration environment, such as iSIGHT-FD. These methods together play a very efficient role in reducing the large scale inefficiencies existing in current product design and development cycles due to poor knowledge sharing and reuse between people and software engineering tools. This work is a significant advance in both understanding and application of integration of knowledge in a distributed engineering design framework.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

HYPOTHESIS A previously developed image-guided robot system can safely drill a tunnel from the lateral mastoid surface, through the facial recess, to the middle ear, as a viable alternative to conventional mastoidectomy for cochlear electrode insertion. BACKGROUND Direct cochlear access (DCA) provides a minimally invasive tunnel from the lateral surface of the mastoid through the facial recess to the middle ear for cochlear electrode insertion. A safe and effective tunnel drilled through the narrow facial recess requires a highly accurate image-guided surgical system. Previous attempts have relied on patient-specific templates and robotic systems to guide drilling tools. In this study, we report on improvements made to an image-guided surgical robot system developed specifically for this purpose and the resulting accuracy achieved in vitro. MATERIALS AND METHODS The proposed image-guided robotic DCA procedure was carried out bilaterally on 4 whole head cadaver specimens. Specimens were implanted with titanium fiducial markers and imaged with cone-beam CT. A preoperative plan was created using a custom software package wherein relevant anatomical structures of the facial recess were segmented, and a drill trajectory targeting the round window was defined. Patient-to-image registration was performed with the custom robot system to reference the preoperative plan, and the DCA tunnel was drilled in 3 stages with progressively longer drill bits. The position of the drilled tunnel was defined as a line fitted to a point cloud of the segmented tunnel using principle component analysis (PCA function in MatLab). The accuracy of the DCA was then assessed by coregistering preoperative and postoperative image data and measuring the deviation of the drilled tunnel from the plan. The final step of electrode insertion was also performed through the DCA tunnel after manual removal of the promontory through the external auditory canal. RESULTS Drilling error was defined as the lateral deviation of the tool in the plane perpendicular to the drill axis (excluding depth error). Errors of 0.08 ± 0.05 mm and 0.15 ± 0.08 mm were measured on the lateral mastoid surface and at the target on the round window, respectively (n =8). Full electrode insertion was possible for 7 cases. In 1 case, the electrode was partially inserted with 1 contact pair external to the cochlea. CONCLUSION The purpose-built robot system was able to perform a safe and reliable DCA for cochlear implantation. The workflow implemented in this study mimics the envisioned clinical procedure showing the feasibility of future clinical implementation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

HYPOTHESIS Facial nerve monitoring can be used synchronous with a high-precision robotic tool as a functional warning to prevent of a collision of the drill bit with the facial nerve during direct cochlear access (DCA). BACKGROUND Minimally invasive direct cochlear access (DCA) aims to eliminate the need for a mastoidectomy by drilling a small tunnel through the facial recess to the cochlea with the aid of stereotactic tool guidance. Because the procedure is performed in a blind manner, structures such as the facial nerve are at risk. Neuromonitoring is a commonly used tool to help surgeons identify the facial nerve (FN) during routine surgical procedures in the mastoid. Recently, neuromonitoring technology was integrated into a commercially available drill system enabling real-time monitoring of the FN. The objective of this study was to determine if this drilling system could be used to warn of an impending collision with the FN during robot-assisted DCA. MATERIALS AND METHODS The sheep was chosen as a suitable model for this study because of its similarity to the human ear anatomy. The same surgical workflow applicable to human patients was performed in the animal model. Bone screws, serving as reference fiducials, were placed in the skull near the ear canal. The sheep head was imaged using a computed tomographic scanner and segmentation of FN, mastoid, and other relevant structures as well as planning of drilling trajectories was carried out using a dedicated software tool. During the actual procedure, a surgical drill system was connected to a nerve monitor and guided by a custom built robot system. As the planned trajectories were drilled, stimulation and EMG response signals were recorded. A postoperative analysis was achieved after each surgery to determine the actual drilled positions. RESULTS Using the calibrated pose synchronized with the EMG signals, the precise relationship between distance to FN and EMG with 3 different stimulation intensities could be determined for 11 different tunnels drilled in 3 different subjects. CONCLUSION From the results, it was determined that the current implementation of the neuromonitoring system lacks sensitivity and repeatability necessary to be used as a warning device in robotic DCA. We hypothesize that this is primarily because of the stimulation pattern achieved using a noninsulated drill as a stimulating probe. Further work is necessary to determine whether specific changes to the design can improve the sensitivity and specificity.