967 resultados para Wideband antennas


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Onset asynchrony is an important cue for segregating sound mixtures. A harmonic of a vowel that begins before the other components contributes less to vowel quality. This asynchrony effect can be partly reversed by accompanying the leading portion of the harmonic with an octave-higher captor tone. The original interpretation was that the captor and leading portion formed a perceptual group, but it has recently been shown that the captor effect depends on neither a common onset time nor harmonic relations with the leading portion. Instead, it has been proposed that the captor effect depends on wideband inhibition in the central auditory system. Physiological evidence suggests that such inhibition occurs both within and across ears. Experiment 1 compared the efficacy of a pure-tone captor presented in the same or opposite ear to the vowel and leading harmonic. Contralateral presentation was at least as effective as ipsilateral presentation. Experiment 2 used multicomponent captors in a more comprehensive evaluation of harmonic influences on captor efficacy. Three captors with different fundamental frequencies were used, one of which formed a consecutive harmonic series with the leading harmonic. All captors were equally effective, irrespective of the harmonic relationship. These findings support and refine the inhibitory account. © 2007 Acoustical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The authors have demonstrated an optical fibre grating based delay line which produces time delays in increments as small as 31 ps. The device could provide a true time delay component for a phased array antenna

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A fibre Bragg grating filter device, tunable over 45 nm, is reported. The device has a wavelength setting time below 1.5 ms and a maximum tuning speed of 21 nm/ns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose and demonstrate novel virtual Gires–Tournois (GT) etalons based on fiber gratings. By introducing an additional phase modulation in wideband linearly chirped fiber Bragg gratings, we have successfully generated GT resonance with only one grating. This technique can simplify the fabrication procedure while retaining the normal advantages of distributed etalons, including their full compatibility with optical fiber, low insertion loss, and low cost. Such etalons can be used as dispersion compensation devices in optical transmission systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultrashort-pulse lasers with spectral tuning capability have widespread applications in fields such as spectroscopy, biomedical research and telecommunications1–3. Mode-locked fibre lasers are convenient and powerful sources of ultrashort pulses4, and the inclusion of a broadband saturable absorber as a passive optical switch inside the laser cavity may offer tuneability over a range of wavelengths5. Semiconductor saturable absorber mirrors are widely used in fibre lasers4–6, but their operating range is typically limited to a few tens of nanometres7,8, and their fabrication can be challenging in the 1.3–1.5 mm wavelength region used for optical communications9,10. Single-walled carbon nanotubes are excellent saturable absorbers because of their subpicosecond recovery time, low saturation intensity, polarization insensitivity, and mechanical and environmental robustness11–16. Here, we engineer a nanotube–polycarbonate film with a wide bandwidth (>300 nm) around 1.55 mm, and then use it to demonstrate a 2.4 ps Er31-doped fibre laser that is tuneable from 1,518 to 1,558 nm. In principle, different diameters and chiralities of nanotubes could be combined to enable compact, mode-locked fibre lasers that are tuneable over a much broader range of wavelengths than other systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose and demonstrate novel virtual Gires-Tournois (GT) etalons based on fiber gratings. By introducing an additional phase modulation in wideband linearly chirped fiber Bragg gratings, we have successfully generated GT resonance with only one grating. This technique can simplify the fabrication procedure while retaining the normal advantages of distributed etalons, including their full compatibility with optical fiber, low insertion loss, and low cost. Such etalons can be used as dispersion compensation devices in optical transmission systems. © 2007 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The THz optoelectronics field is now maturing and semiconductor-based THz antenna devices are becoming more widely implemented as analytical tools in spectroscopy and imaging. Photoconductive (PC) THz switches/antennas are driven optically typically using either an ultrashort-pulse laser or an optical signal composed of two simultaneous longitudinal wavelengths which are beat together in the PC material at a THz difference frequency. This allows the generation of (photo)carrier pairs which are then captured over ultrashort timescales usually by defects and trapping sites throughout the active material lattice. Defect-implanted PC materials with relatively high bandgap energy are typically used and many parameters such as carrier mobility and PC gain are greatly compromised. This paper demonstrates the implementation of low bandgap energy InAs quantum dots (QDs) embedded in standard crystalline GaAs as both the PC medium and the ultrafast capture mechanism in a PC THz antenna. This semiconductor structure is grown using standard MBE methods and allows the device to be optically driven efficiently at wavelengths up to ~1.3 µm, in this case by a single tunable dual-mode QD diode laser.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photonic signal processing is used to implement common mode signal cancellation across a very wide bandwidth utilising phase modulation of radio frequency (RF) signals onto a narrow linewidth laser carrier. RF spectra were observed using narrow-band, tunable optical filtering using a scanning Fabry Perot etalon. Thus functions conventionally performed using digital signal processing techniques in the electronic domain have been replaced by analog techniques in the photonic domain. This technique was able to observe simultaneous cancellation of signals across a bandwidth of 1400 MHz, limited only by the free spectral range of the etalon. © 2013 David M. Benton.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A compact Θ shaped microfiber resonator for multifunctional, tunable and wideband filter is proposed. The filtering performance of reflection and transmission spectra depending on coupling coefficients and cavity length is theoretically investigated and experimentally demonstrated. © 2015 OSA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present novel Terahertz (THz) emitting optically pumped Quantum Dot (QD) photoconductive (PC) materials and antenna structures on their basis both for pulsed and CW pumping regimes. Full text Quantum dot and microantenna design - Presented here are design considerations for the semiconductor materials in our novel QD-based photoconductive antenna (PCA) structures, metallic microantenna designs, and their implementation as part of a complete THz source or transceiver system. Layers of implanted QDs can be used for the photocarrier lifetime shortening mechanism[1,2]. In our research we use InAs:GaAs QD structures of varying dot layer number and distributed Bragg reflector(DBR)reflectivity range. According to the observed dependence of carrier lifetimes on QD layer periodicity [3], it is reasonable to assume that electron lifetimes can be potentially reduced down to 0.45ps in such structures. Both of these features; long excitation wavelength and short carriers lifetime predict possible feasibility of QD antennas for THz generation and detection. In general, relatively simple antenna configurations were used here, including: coplanar stripline (CPS); Hertzian-type dipoles; bow-ties for broadband and log-spiral(LS)or log-periodic(LP)‘toothed’ geometriesfor a CW operation regime. Experimental results - Several lasers are used for antenna pumping: Ti:Sapphire femtosecond laser, as well as single-[4], double-[5] wavelength, and pulsed [6] QD lasers. For detection of the THz signal different schemes and devices were used, e.g. helium-cooled bolometer, Golay cell and a second PCA for coherent THz detection in a traditional time-domain measurement scheme.Fig.1shows the typical THz output power trend from a 5 um-gap LPQD PCA pumped using a tunable QD LD with optical pump spectrum shown in (b). Summary - QD-based THz systems have been demonstrated as a feasible and highly versatile solution. The implementation of QD LDs as pump sources could be a major step towards ultra-compact, electrically controllable transceiver system that would increase the scope of data analysis due to the high pulse repetition rates of such LDs [3], allowing real-time THz TDS and data acquisition. Future steps in development of such systems now lie in the further investigation of QD-based THz PCA structures and devices, particularly with regards to their compatibilitywith QD LDs as pump sources. [1]E. U. Rafailov et al., “Fast quantum-dot saturable absorber for passive mode-locking of solid-State lasers,”Photon.Tech.Lett., IEEE, vol. 16 pp. 2439-2441(2004) [2]E. Estacio, “Strong enhancement of terahertz emission from GaAs in InAs/GaAs quantum dot structures. Appl.Phys.Lett., vol. 94 pp. 232104 (2009) [3]C. Kadow et al., “Self-assembled ErAs islands in GaAs: Growth and subpicosecond carrier dynamics,” Appl. Phys. Lett., vol. 75 pp. 3548-3550 (1999) [4]T. Kruczek, R. Leyman, D. Carnegie, N. Bazieva, G. Erbert, S. Schulz, C. Reardon, and E. U. Rafailov, “Continuous wave terahertz radiation from an InAs/GaAs quantum-dot photomixer device,” Appl. Phys. Lett., vol. 101(2012) [5]R. Leyman, D. I. Nikitichev, N. Bazieva, and E. U. Rafailov, “Multimodal spectral control of a quantum-dot diode laser for THz difference frequency generation,” Appl. Phys. Lett., vol. 99 (2011) [6]K.G. Wilcox, M. Butkus, I. Farrer, D.A. Ritchie, A. Tropper, E.U. Rafailov, “Subpicosecond quantum dot saturable absorber mode-locked semiconductor disk laser, ” Appl. Phys. Lett. Vol 94, 2511 © 2014 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work is directed towards optimizing the radiation pattern of smart antennas using genetic algorithms. The structure of the smart antennas based on Space Division Multiple Access (SDMA) is proposed. It is composed of adaptive antennas, each of which has adjustable weight elements for amplitudes and phases of signals. The corresponding radiation pattern formula available for the utilization of numerical optimization techniques is deduced. Genetic algorithms are applied to search the best phase-amplitude weights or phase-only weights with which the optimal radiation pattern can be achieved. ^ One highlight of this work is the proposed optimal radiation pattern concept and its implementation by genetic algorithms. The results show that genetic algorithms are effective for the true Signal-Interference-Ratio (SIR) design of smart antennas. This means that not only nulls can be put in the directions of the interfering signals but also simultaneously main lobes can be formed in the directions of the desired signals. The optimal radiation pattern of a smart antenna possessing SDMA ability has been achieved. ^ The second highlight is on the weight search by genetic algorithms for the optimal radiation pattern design of antennas having more than one interfering signal. The regular criterion for determining which chromosome should be kept for the next step iteration is modified so as to improve the performance of the genetic algorithm iteration. The results show that the modified criterion can speed up and guarantee the iteration to be convergent. ^ In addition, the comparison between phase-amplitude perturbations and phase-only perturbations for the radiation pattern design of smart antennas are carried out. The effects of parameters used by the genetic algorithm on the optimal radiation pattern design are investigated. Valuable results are obtained. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, wireless communication infrastructures have been widely deployed for both personal and business applications. IEEE 802.11 series Wireless Local Area Network (WLAN) standards attract lots of attention due to their low cost and high data rate. Wireless ad hoc networks which use IEEE 802.11 standards are one of hot spots of recent network research. Designing appropriate Media Access Control (MAC) layer protocols is one of the key issues for wireless ad hoc networks. ^ Existing wireless applications typically use omni-directional antennas. When using an omni-directional antenna, the gain of the antenna in all directions is the same. Due to the nature of the Distributed Coordination Function (DCF) mechanism of IEEE 802.11 standards, only one of the one-hop neighbors can send data at one time. Nodes other than the sender and the receiver must be either in idle or listening state, otherwise collisions could occur. The downside of the omni-directionality of antennas is that the spatial reuse ratio is low and the capacity of the network is considerably limited. ^ It is therefore obvious that the directional antenna has been introduced to improve spatial reutilization. As we know, a directional antenna has the following benefits. It can improve transport capacity by decreasing interference of a directional main lobe. It can increase coverage range due to a higher SINR (Signal Interference to Noise Ratio), i.e., with the same power consumption, better connectivity can be achieved. And the usage of power can be reduced, i.e., for the same coverage, a transmitter can reduce its power consumption. ^ To utilizing the advantages of directional antennas, we propose a relay-enabled MAC protocol. Two relay nodes are chosen to forward data when the channel condition of direct link from the sender to the receiver is poor. The two relay nodes can transfer data at the same time and a pipelined data transmission can be achieved by using directional antennas. The throughput can be improved significant when introducing the relay-enabled MAC protocol. ^ Besides the strong points, directional antennas also have some explicit drawbacks, such as the hidden terminal and deafness problems and the requirements of retaining location information for each node. Therefore, an omni-directional antenna should be used in some situations. The combination use of omni-directional and directional antennas leads to the problem of configuring heterogeneous antennas, i e., given a network topology and a traffic pattern, we need to find a tradeoff between using omni-directional and using directional antennas to obtain a better network performance over this configuration. ^ Directly and mathematically establishing the relationship between the network performance and the antenna configurations is extremely difficult, if not intractable. Therefore, in this research, we proposed several clustering-based methods to obtain approximate solutions for heterogeneous antennas configuration problem, which can improve network performance significantly. ^ Our proposed methods consist of two steps. The first step (i.e., clustering links) is to cluster the links into different groups based on the matrix-based system model. After being clustered, the links in the same group have similar neighborhood nodes and will use the same type of antenna. The second step (i.e., labeling links) is to decide the type of antenna for each group. For heterogeneous antennas, some groups of links will use directional antenna and others will adopt omni-directional antenna. Experiments are conducted to compare the proposed methods with existing methods. Experimental results demonstrate that our clustering-based methods can improve the network performance significantly. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of 3G (the 3rd generation telecommunication) value-added services brings higher requirements of Quality of Service (QoS). Wideband Code Division Multiple Access (WCDMA) is one of three 3G standards, and enhancement of QoS for WCDMA Core Network (CN) becomes more and more important for users and carriers. The dissertation focuses on enhancement of QoS for WCDMA CN. The purpose is to realize the DiffServ (Differentiated Services) model of QoS for WCDMA CN. Based on the parallelism characteristic of Network Processors (NPs), the NP programming model is classified as Pool of Threads (POTs) and Hyper Task Chaining (HTC). In this study, an integrated programming model that combines both of the two models was designed. This model has highly efficient and flexible features, and also solves the problems of sharing conflicts and packet ordering. We used this model as the programming model to realize DiffServ QoS for WCDMA CN. ^ The realization mechanism of the DiffServ model mainly consists of buffer management, packet scheduling and packet classification algorithms based on NPs. First, we proposed an adaptive buffer management algorithm called Packet Adaptive Fair Dropping (PAFD), which takes into consideration of both fairness and throughput, and has smooth service curves. Then, an improved packet scheduling algorithm called Priority-based Weighted Fair Queuing (PWFQ) was introduced to ensure the fairness of packet scheduling and reduce queue time of data packets. At the same time, the delay and jitter are also maintained in a small range. Thirdly, a multi-dimensional packet classification algorithm called Classification Based on Network Processors (CBNPs) was designed. It effectively reduces the memory access and storage space, and provides less time and space complexity. ^ Lastly, an integrated hardware and software system of the DiffServ model of QoS for WCDMA CN was proposed. It was implemented on the NP IXP2400. According to the corresponding experiment results, the proposed system significantly enhanced QoS for WCDMA CN. It extensively improves consistent response time, display distortion and sound image synchronization, and thus increases network efficiency and saves network resource.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this dissertation, are presented two microstrip antennas and two arrays for applications in wireless communication systems multiband. Initially, we studied an antenna and a linear array consisting of two elements identical to the patch antenna isolated. The shape of the patch used in both structures is based on fractal geometry and has multiband behavior. Next a new antenna is analyzed and a new array such as initial structure, but with the truncated ground plane, in order to obtain better bandwidths and return loss. For feeding the structures, we used microstrip transmission line. In the design of planar structures, was used HFSS software for the simulation. Next were built and measures electromagnetic parameters such as input impedance and return loss, using vector network analyzer in the telecommunications laboratory of Federal University of Rio Grande do Norte. The experimental results were compared with the simulated and showed improved return loss for the first array and also appeared a fourth band and increased directivity compared with the isolated antenna. The first two benefits are not commonly found in the literature. For structures with a truncated ground planes, the technique improved impedance matching, bandwidth and return loss when compared to the initial structure with filled ground planes. Moreover, these structures exhibited a better distribution of frequency, facilitating the adjustment of frequencies. Thus, it is expected that the planar structures presented in this study, particularly arrays may be suitable for specific applications in wireless communication systems when frequency multiband and wideband transmission signals are required.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A few years ago, some of the authors of the paper demonstrated the resonance of optical antennas in the visible frequencies. The results of that paper were obtained using experimental techniques that were primarily developed for the measurement of antenna-coupled detectors in the infrared. In the present paper, we show the results of spatial-response mapping obtained by using a dedicated measurement station for the characterization of optical antennas in the visible. At the same time, the bottleneck in the spatial responsivity calculation represented by the beam characterization has been approached from a different perspective. The proposed technique uses a collection of knife edge measurements in order to avoid the use of any model of the laser beam irradiance. By taking all this into account we present the spatial responsivity of optical antennas measured with high spatial resolution in the visible.