862 resultados para White, Winefrid.
Resumo:
White household paints are commonly encountered as evidence in the forensic laboratory but they often cannot be readily distinguished by color alone so Fourier transform infrared (FT-IR) microscopy is used since it can sometimes discriminate between paints prepared with different organic resins. Here we report the first comparative study of FT-IR and Raman spectroscopy for forensic analysis of white paint. Both techniques allowed the 51 white paint samples in the study to be classified by inspection as either belonging to distinct groups or as unique samples. FT-IR gave five groups and four unique samples; Raman gave seven groups and six unique samples. The basis for this discrimination was the type of resin and/ or inorganic pigments/extenders present. Although this allowed approximately half of the white paints to be distinguished by inspection, the other half were all based on a similar resin and did not contain the distinctive modifiers/pigments and extenders that allowed the other samples to be identified. The experimental uncertainty in the relative band intensities measured using FT-IR was similar to the variation within this large group, so no further discrimination was possible. However, the variation in the Raman spectra was larger than the uncertainty, which allowed the large group to be divided into three subgroups and four distinct spectra, based on relative band intensities. The combination of increased discrimination and higher sample throughput means that the Raman method is superior to FT-IR for samples of this type. © 2005 Society for Applied Spectroscopy.
Resumo:
GD 552 is a cataclysmic binary which was previously believed to be composed of an M-star and a white dwarf, the latter having an extreme mass of 1.4 solar masses. In a recent paper we showed that this is not compatible with new observational evidence and presented an alternative model in which the white dwarf has a typical mass and the companion is a brown dwarf, making the system a likely member of the elusive group of CVs which have already evolved through minimum orbital period. Here we present additional spectroscopical evidence supporting this conclusion by means of skew mapping.
Resumo:
The star 1SWASP J024743.37-251549.2 was recently discovered to be a binary star in which an A-type dwarf star eclipses the remnant of a disrupted red giant star (WASP 0247-25 B). The remnant is in a rarely observed state evolving to higher effective temperatures at nearly constant luminosity prior to becoming a very low mass white dwarf composed almost entirely of helium, i.e. it is a pre-helium white dwarf (pre-He-WD). We have used the photometric database from theWide Angle Search for Planets (WASP) to find 17 eclipsing binary stars with orbital periods P = 0.7-2.2 d with similar light curves to 1SWASP J024743.37-251549.2. The only star in this group previously identified as a variable star is the brightest one, EL CVn, which we adopt as the prototype for this class of eclipsing binary star. The characteristic light curves of EL CVn-type stars show a total eclipse by an A-type dwarf star of a smaller, hotter star and a secondary eclipse of comparable depth to the primary eclipse. We have used new spectroscopic observations for six of these systems to confirm that the companions to the A-type stars in these binaries have very low masses (≈0.2M⊙). This includes the companion to EL CVn which was not previously known to be a pre-He-WD. EL CVn-type binary star systems will enable us to study the formation of very low mass white dwarfs in great detail, particularly in those cases where the pre-He-WD star shows non-radial pulsations similar to those recently discovered in WASP0247-25 B. © 2013 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.
Resumo:
SN 2010lp is a subluminous Type Ia supernova (SN Ia) with slowly evolving lightcurves. Moreover, it is the only subluminous SN Ia observed so far that shows narrow emission lines of [O I] in late-time spectra, indicating unburned oxygen close to the center of the ejecta. Most explosion models for SNe Ia cannot explain the narrow [O I] emission. Here, we present hydrodynamic explosion and radiative transfer calculations showing that the violent merger of two carbon-oxygen white dwarfs of 0.9 and 0.76 M adequately reproduces the early-time observables of SN 2010lp. Moreover, our model predicts oxygen close to the center of the explosion ejecta, a pre-requisite for narrow [O I] emission in nebular spectra as observed in SN 2010lp. © 2013. The American Astronomical Society. All rights reserved.
Resumo:
Volcanic ash layers preserved within the geologic record represent precise time markers that correlate disparate depositional environments and enable the investigation of synchronous and/or asynchronous behaviors in Earth system and archaeological sciences. However, it is generally assumed that only exceptionally powerful events, such as supereruptions (≥450 km3 of ejecta as dense-rock equivalent; recurrence interval of ∼105 yr), distribute ash broadly enough to have an impact on human society, or allow us to address geologic, climatic, and cultural questions on an intercontinental scale. Here we use geochemical, age, and morphological evidence to show that the Alaskan White River Ash (eastern lobe; A.D. 833–850) correlates to the “AD860B” ash (A.D. 846–848) found in Greenland and northern Europe. These occurrences represent the distribution of an ash over 7000 km, linking marine, terrestrial, and ice-core records. Our results indicate that tephra from more moderate-size eruptions, with recurrence intervals of ∼100 yr, can have substantially greater distributions than previously thought, with direct implications for volcanic dispersal studies, correlation of widely distributed proxy records, and volcanic hazard assessment.
Resumo:
Establishing how invasive species impact upon pre-existing species is a fundamental question in ecology and conservation biology. The greater white-toothed shrew (Crocidura russula) is an invasive species in Ireland that was first recorded in 2007 and which, according to initial data, may be limiting the abundance/distribution of the pygmy shrew (Sorex minutus), previously Ireland’s only shrew species. Because of these concerns, we undertook an intensive live-trapping survey (and used other data from live-trapping, sightings and bird of prey pellets/nest inspections collected between 2006 and 2013) to model the distribution and expansion of C. russula in Ireland and its impacts on Ireland’s small mammal community. The main distribution range of C. russula was found to be approximately 7,600 km2 in 2013, with established outlier populations suggesting that the species is dispersing with human assistance within the island. The species is expanding rapidly for a small mammal, with a radial expansion rate of 5.5 km/yr overall (2008–2013), and independent estimates from live-trapping in 2012–2013 showing rates of 2.4–14.1 km/yr, 0.5–7.1 km/yr and 0–5.6 km/yr depending on the landscape features present. S. minutus is negatively associated with C. russula. S. minutus is completely absent at sites where C. russula is established and is only present at sites at the edge of and beyond the invasion range of C. russula. The speed of this invasion and the homogenous nature of the Irish landscape may mean that S. minutus has not had sufficient time to adapt to the sudden appearance of C. russula. This may mean the continued decline/disappearance of S. minutus as C. russula spreads throughout the island.
Resumo:
Prokaryotic and ciliate communities of healthy and aquarium White Syndrome (WS)-affected coral fragments were screened using denaturing gradient gel electrophoresis (DGGE). A significant difference (R = 0.907, p < 0.001) in 16S rRNA prokaryotic diversity was found between healthy (H), sloughed tissue (ST), WS-affected (WSU) and antibiotic treated (WST) samples. Although 3 Vibrio spp were found inWS-affected samples, two of these species were eliminated following ampicillin treatment, yet lesions continued to advance, suggesting they play a minor or secondary role in the pathogenesis. The third Vibrio sp increased slightly in relative abundance in diseased samples and was abundant in non-diseased samples. Interestingly, a Tenacibaculum sp showed the greatest increase in relative abundance between healthy and WS-affected samples, demonstrating consistently high abundance across all WS-affected and treated samples, suggesting Tenacibaculum sp could be a more likely candidate for pathogenesis in this instance. In contrast to previous studies bacterial abundance did not vary significantly (ANOVA, F2, 6 = 1.000, p = 0.422) between H, ST, WSU or WST. Antimicrobial activity (assessed on Vibrio harveyi cultures) was limited in both H and WSU samples (8.1% ±8.2 and 8.0% ±2.5, respectively) and did not differ significantly (Kruskal-Wallis, χ2 (2) = 3.842, p = 0.146). A Philaster sp, a Cohnilembus sp and a Pseudokeronopsis sp. were present in all WS-affected samples, but not in healthy samples. The exact role of ciliates in WS is yet to be determined, but it is proposed that they are at least responsible for the neat lesion boundary observed in the disease.