948 resultados para Water contact pattern
Resumo:
In the current managed Everglades system, the pre-drainage, patterned mosaic of sawgrass ridges, sloughs and tree islands has been substantially altered or reduced largely as a result of human alterations to historic ecological and hydrological processes that sustained landscape patterns. The pre-compartmentalization ridge and slough landscape was a mosaic of sloughs, elongated sawgrass ridges (50-200m wide), and tree islands. The ridges and sloughs and tree islands were elongated in the direction of the water flow, with roughly equal area of ridge and slough. Over the past decades, the ridge-slough topographic relief and spatial patterning have degraded in many areas of the Everglades. Nutrient enriched areas have become dominated by Typha with little topographic relief; areas of reduced flow have lost the elongated ridge-slough topography; and ponded areas with excessively long hydroperiods have experienced a decline in ridge prevalence and shape, and in the number of tree islands (Sklar et al. 2004, Ogden 2005).
Resumo:
In the southern Everglades, vegetation in both the marl prairie and ridge and slough landscapes is sensitive to large-scale restoration activities associated with the Comprehensive Everglades Restoration Plan (CERP) authorized by the Water Resources Development Act (WRDA) 2000 to restore the south Florida ecosystem. More specifically, changes in hydrologic regimes at both local and landscape scales are likely to affect vegetation composition along marl prairie-slough gradient resulting in a shift in boundary between plant communities in these landscapes. To strengthen our ability to assess how vegetation would respond to changes in underlying ecosystem drivers along the gradient, an improved understanding of reference conditions of plant community structure and function, and their responses to major stressors is important. In this regard, a study of vegetation structure and composition in relation to physical and biological processes along the marl prairie-slough gradient was initiated in 2005, and has continued through 2012 with funding from US Army Corps of Engineers (USACOE) (Cooperative Agreement # W912HZ-09-2-0018 Modification No.: P00002). This study addresses the hypothesis with respect to RECOVER-MAP monitoring item 3.1.3.5 – “Marl Prairie/Slough Gradients; patterns and trends in Shark Slough marshes and associated marl prairies”.
Resumo:
Hydrogeologic variables controlling groundwater exchange with inflow and flow-through lakes were simulated using a three-dimensional numerical model (MODFLOW) to investigate and quantify spatial patterns of lake bed seepage and hydraulic head distributions in the porous medium surrounding the lakes. Also, the total annual inflow and outflow were calculated as a percentage of lake volume for flow-through lake simulations. The general exponential decline of seepage rates with distance offshore was best demonstrated at lower anisotropy ratio (i.e., Kh/Kv = 1, 10), with increasing deviation from the exponential pattern as anisotropy was increased to 100 and 1000. 2-D vertical section models constructed for comparison with 3-D models showed that groundwater heads and seepages were higher in 3-D simulations. Addition of low conductivity lake sediments decreased seepage rates nearshore and increased seepage rates offshore in inflow lakes, and increased the area of groundwater inseepage on the beds of flow-through lakes. Introduction of heterogeneity into the medium decreased the water table and seepage ratesnearshore, and increased seepage rates offshore in inflow lakes. A laterally restricted aquifer located at the downgradient side of the flow-through lake increased the area of outseepage. Recharge rate, lake depth and lake bed slope had relatively little effect on the spatial patterns of seepage rates and groundwater exchange with lakes.
Resumo:
Since the inception of the international GEOTRACES program, studies investigating the distribution of trace elements and their isotopes in the global ocean have significantly increased. In spite of this large-scale effort, the distribution of neodymium isotopes (143Nd/144Nd) and concentrations ([Nd]) in the high latitude south Pacific is still understudied. Here we report dissolved Nd isotopes and concentrations from 11 vertical water column profiles from the south Pacific between South America and New Zealand. Results suggest that Ross Sea Bottom Water (RSBW) is represented by an epsilon-Nd value of ~ -7, and is thus more radiogenic than Circumpolar Deep Water (epsilon-Nd ~ -8). RSBW and its characteristic epsilon-Nd signature can be traced far into the SE Pacific until progressive mixing with ambient Lower Circumpolar Deep water (LCDW) dilutes this signal north of the Antarctic Polar Front (APF). The SW-NE trending Pacific-Antarctic Ridge restricts the advection of RSBW into the SW Pacific, where bottom water density, salinity, and epsilon-Nd values of -9 indicate the presence of bottom waters of an origin different from the Ross Sea. Neodymium concentrations show low surface concentrations and a linear increase with depth north of the Polar Front. South of the APF, surface [Nd] is high and increases with depth but remains almost constant below ~1000 m. This vertical and spatial [Nd] pattern follows the southward shoaling density surfaces of the Southern Ocean frontal system and hence suggests supply of Nd to the upper ocean through upwelling of Nd-rich deep water. Low particle abundance dominated by reduced opal production and seasonal sea ice cover likely contributes to the maintenance of the high upper ocean [Nd] south of the APF. The reported data highlights the use of Nd isotopes as a water mass tracer in the Southern Ocean, with the potential for paleocenaographic reconstructions, and contributes to an improved understanding of Nd biogeochemistry.
Resumo:
Produced water constitutes the largest volume of waste from offshore oil and gas operations and is composed of a wide range of organic and inorganic compounds. Although treatment processes have to meet strict oil in water regulations, the definition of “oil” is a function of the analysis process and may include aliphatic hydrocarbons which have limited environmental impact due to degradability whilst ignoring problematic dissolved petroleum species. This thesis presents the partitioning behavior of oil in produced water as a function of temperature and salinity to identify compounds of environmental concern. Phenol, p-cresol, and 4-tert-butylphenol were studied because of their xenoestrogenic power; other compounds studied are polycyclic aromatic hydrocarbon PAHs which include naphthalene, fluorene, phenanthrene, and pyrene. Partitioning experiments were carried out in an Innova incubator for 48 hours, temperature was varied from 4゚C to 70゚C, and two salinity levels of 46.8‰ and 66.8‰ were studied. Results obtained showed that the dispersed oil concentration in the water reduces with settling time and equilibrium was attained at 48 h settling time. Polycyclic aromatic hydrocarbons (PAHs) partitions based on dispersed oil concentration whereas phenols are not significantly affected by dispersed oil concentration. Higher temperature favors partitioning of PAHs into the water phase. Salinity has negligible effect on partitioning pattern of phenols and PAHs studied. Simulation results obtained from the Aspen HYSYS model shows that temperature and oil droplet distribution greatly influences the efficiency of produced water treatment system.
Resumo:
A large series of laboratory ice crushing experiments was performed to investigate the effects of external boundary condition and indenter contact geometry on ice load magnitude under crushing conditions. Four boundary conditions were considered: dry cases, submerged cases, and cases with the presence of snow and granular ice material on the indenter surface. Indenter geometries were a flat plate, wedge shaped indenter, (reverse) conical indenter, and spherical indenter. These were impacted with artificially produced ice specimens of conical shape with 20° and 30° cone angles. All indenter – ice combinations were tested in dry and submerged environments at 1 mm/s and 100 mm/s indentation rates. Additional tests with the flat indentation plate were conducted at 10 mm/s impact velocity and a subset of scenarios with snow and granular ice material was evaluated. The tests were performed using a material testing system (MTS) machine located inside a cold room at an ambient temperature of - 7°C. Data acquisition comprised time, vertical force, and displacement. In several tests with the flat plate and wedge shaped indenter, supplementary information on local pressure patterns and contact area were obtained using tactile pressure sensors. All tests were recorded with a high speed video camera and still photos were taken before and after each test. Thin sections were taken of some specimens as well. Ice loads were found to strongly depend on contact condition, interrelated with pre-existing confinement and indentation rate. Submergence yielded higher forces, especially at the high indentation rate. This was very evident for the flat indentation plate and spherical indenter, and with restrictions for the wedge shaped indenter. No indication was found for the conical indenter. For the conical indenter it was concluded that the structural restriction due to the indenter geometry was dominating. The working surface for the water to act was not sufficient to influence the failure processes and associated ice loads. The presence of snow and granular ice significantly increased the forces at the low indentation rate (with the flat indentation plate) that were higher compared to submerged cases and far above the dry contact condition. Contact area measurements revealed a correlation of higher forces with a concurrent increase in actual contact area that depended on the respective boundary condition. In submergence, ice debris constitution was changed; ice extrusion, as well as crack development and propagation were impeded. Snow and granular ice seemed to provide additional material sources for establishing larger contact areas. The dry contact condition generally had the smallest real contact area, as well as the lowest forces. The comparison of nominal and measured contact areas revealed distinct deviations. The incorporation of those differences in contact process pressures-area relationships indicated that the overall process pressure was not substantially affected by the increased loads.
Resumo:
Shipboard whole-core squeezing was used to measure pore water concentration vs depth profiles of [NO3]-, O2 and SiO2 at 12 stations in the equatorial Pacific along a transect from 15°S to 11°N at 135°W. The [NO3]- and SiO2 profiles were combined with fine-scale resistivity and porosity measurements to calculate benthic fluxes. After using O2 profiles, coupled with the [NO3]- profiles, to constrain the C:N of the degrading organic matter, the [NO3]- fluxes were converted to benthic organic carbon degradation rates. The range in benthic organic carbon degradation rates is 7-30 ?mol cm**-2 y**-1, with maximum values at the equator and minimum values at the southern end of the transect. The zonal trend of benthic degradation rates, with its equatorial maximum and with elevated values skewed to the north of the equator, is similar to the pattern of primary production observed in the region. Benthic organic carbon degradation is 1-2% of primary production. The range of benthic biogenic silica dissolution rates is 6.9-20 µmol cm**-2 y**-1, representing 2.5-5% of silicon fixation in the surface ocean of the region. Its zonal pattern is distinctly different from that of organic carbon degradation: the range in the ratio of silica dissolution to carbon degradation along the transect is 0.44-1.7 mol Si mol C**-1, with maximum values occurring between 12°S and 2°S, and with fairly constant values of 0.5-0.7 north of the equator. A box model calculation of the average lifetime of the organic carbon in the upper 1 cm of the sediments, where 80 +/- 11% of benthic organic carbon degradation occurs, indicates that it is short: from 3.1 years at high flux stations to 11 years at low flux stations. The reactive component of the organic matter must have a shorter lifetime than this average value. In contrast, the average lifetime of biogenic silica in the upper centimeter of these sediments is 55 +/- 28 years, and shows no systematic variations with benthic flux.
Resumo:
Assessing frequency and extent of mass movement at continental margins is crucial to evaluate risks for offshore constructions and coastal areas. A multidisciplinary approach including geophysical, sedimentological, geotechnical, and geochemical methods was applied to investigate multistage mass transport deposits (MTDs) off Uruguay, on top of which no surficial hemipelagic drape was detected based on echosounder data. Nonsteady state pore water conditions are evidenced by a distinct gradient change in the sulfate (SO4**2-) profile at 2.8 m depth. A sharp sedimentological contact at 2.43 m coincides with an abrupt downward increase in shear strength from approx. 10 to >20 kPa. This boundary is interpreted as a paleosurface (and top of an older MTD) that has recently been covered by a sediment package during a younger landslide event. This youngest MTD supposedly originated from an upslope position and carried its initial pore water signature downward. The kink in the SO4**2- profile approx. 35 cm below the sedimentological and geotechnical contact indicates that bioirrigation affected the paleosurface before deposition of the youngest MTD. Based on modeling of the diffusive re-equilibration of SO4**2- the age of the most recent MTD is estimated to be <30 years. The mass movement was possibly related to an earthquake in 1988 (approx. 70 km southwest of the core location). Probabilistic slope stability back analysis of general landslide structures in the study area reveals that slope failure initiation requires additional ground accelerations. Therefore, we consider the earthquake as a reasonable trigger if additional weakening processes (e.g., erosion by previous retrogressive failure events or excess pore pressures) preconditioned the slope for failure. Our study reveals the necessity of multidisciplinary approaches to accurately recognize and date recent slope failures in complex settings such as the investigated area.
Resumo:
Coral reefs are increasingly threatened by global and local anthropogenic stressors, such as rising seawater temperature and nutrient enrichment. These two stressors vary widely across the reef face and parsing out their influence on coral communities at reef system scales has been particularly challenging. Here, we investigate the influence of temperature and nutrients on coral community traits and life history strategies on lagoonal reefs across the Belize Mesoamerican Barrier Reef System (MBRS). A novel metric was developed using ultra-high-resolution sea surface temperatures (SST) to classify reefs as enduring low (lowTP), moderate (modTP), or extreme (extTP) temperature parameters over 10 years (2003 to 2012). Chlorophyll-a (chl a) records obtained for the same interval were employed as a proxy for bulk nutrients and these records were complemented with in situ measurements to "sea truth" nutrient content across the three reef types. Chl a concentrations were highest at extTP sites, medial at modTP sites and lowest at lowTP sites. Coral species richness, abundance, diversity, density, and percent cover were lower at extTP sites compared to lowTP and modTP sites, but these reef community traits did not differ between lowTP and modTP sites. Coral life history strategy analyses showed that extTP sites were dominated by hardy stress-tolerant and fast-growing weedy coral species, while lowTP and modTP sites consisted of competitive, generalist, weedy, and stress-tolerant coral species. These results suggest that differences in coral community traits and life history strategies between extTP and lowTP/modTP sites were driven primarily by temperature differences with differences in nutrients across site types playing a lesser role. Dominance of weedy and stress-tolerant genera at extTP sites suggests that corals utilizing these two life history strategies may be better suited to cope with warmer oceans and thus may warrant further protective status during this climate change interval.
Data associated with this project are archived here, including:
-SST data
-Satellite Chl a data
-Nutrient measurements
-Raw coral community survey data
For questions contact Justin Baumann (j.baumann3
Resumo:
In this contribution, we experimentally test the effects of azimuth and tilt angle on the acoustic reflectivity of a liquid- anisotropic solid interface. For this study, we are using a large source transducer, and acquired data for samples with different tilt angles. We use Phenolic CE material, which is known to have orthorhombic symmetry. Our results show that changes of the tilt angle produce important variations on the reflectivity that are larger as the tilt increases. The most remarkable feature is the change of the critical angle with the azimuth, which shows a larger spread for larger tilts. The spectral components of the acquired waveforms also show characteristic features linked to the location of the critical angle, we particularly observed a drop in the peak frequency. These observations suggest that care must be taken about the interpretation and inversion of observed incidence and azimuth dependent seismic reflectivities and critical angles in obtaining information on a formation's anisotropy. Zip archive contains four segy files: - LAB_TI00, is not tilted sample in contact with water, - LAB_TI30, is 30degrees tilted sample in contact with water, - LAB_TI45, is 45 degrees tilted sample in contact with water, - LAB_TI90, is 90 degrees tilted sample in contact with water.
Resumo:
The gross changes in concentrations of several trace elements in seawater after contact with ferro-manganese particle suspensions has been determined. Cobalt, Fe, and Zn concentrations in the seawater were greatly increased after contact with the par¬ticles. The concentrations of Rb, U, Cs, Sb, and Ag were altered to a lesser degree by this treatment. Similar results were observed where seawater was con¬tacted with suspensions of pelagic sediments. Of the trace elements measured, cobalt and iron appear to be the best elemental indicators of the presence of manganese mining effluents in the ocean. The addi¬tions of the essential elements Co, Fe and Zn toge¬ther with nutrients from the bottom waters may pro¬duce increased biological productivity. However, the toxic trace metals, such as Hg, Cu and Cd which could enter ocean water from the nodules and sedi¬ment and which may be high in effluent-affected areas should be investigated before conclusions as to the likely impact can be reached. Trace element analysis of seawater samples collected at a Pacific Ocean manganese nodule dredging site showed high t race element concentrations, but these are believed to have resulted from contamination during sample collection or storage rather than from the dredging operations.
Resumo:
The surface water in the Transpolar Drift in the Arctic Ocean has a strong signature of 228Ra. In an earlier study of 228Ra in the open Arctic we showed that the major 228Ra source had to be in the Siberian shelf seas, but only a single shelf station was published so far. Here we investigate the sources of this signal on the Siberian shelves by measurements of 228Ra and 226Ra in surface waters of the Kara and Laptev Sea, including the Ob, Yenisey and Lena estuaries. In the Ob and Lena rivers we found an indication for a very strong and unexpected removal of both isotopes in the early stage of estuarine mixing, presumably related to flocculation of organic-rich material. Whereas 226Ra behaves conservatively on the shelf, the distribution of 228Ra is governed by large inputs on the shelves, although sources are highly variable. In the Kara Sea the maximum activity was found in the Baydaratskaya Bay, where tidal resonance and low freshwater supply favour 228Ra accumulation. The Laptev Sea is a stronger source for 228Ra than the Kara Sea. Since a large part of Kara Sea water flows through the Laptev Sea, the 228Ra signal in the Transpolar Drift can be described as originating on the Laptev shelf. The combined freshwater inputs from the Eurasian shelves thus produce a common radium signature with a 228Ra/226Ra activity ratio of 4.0 at 20% river water. The radium signals of the individual Siberian rivers and shelves cannot be separated, but their signal is significantly different from the signal produced on the Canadian shelf (Smith et al., in press). In this respect, the radium tracers add to the information given by Barium. Moreover, with the 5.8 year half-life of 228Ra, they have the potential to serve as a tracer for the age of a water mass since its contact with the shelves.
Resumo:
A pressurized core with CH4 hydrate or dissolved CH4 should evolve gas volumes in a predictable manner as pressure is released over time at isothermal conditions. Incremental gas volumes were collected as pressure was released over time from 29 pressure core sampler (PCS) cores from Sites 994, 995, 996, and 997 on the Blake Ridge. Most of these cores were kept at or near 0ºC with an ice bath, and many of these cores yielded substantial quantities of CH4. Volume-pressure plots were constructed for 20 of these cores. Only five plots conform to expected volume and pressure changes for sediment cores with CH4 hydrate under initial pressure and temperature conditions. However, other evidence suggests that sediment in these five and at least five other PCS cores contained CH4 hydrate before core recovery and gas release. Detection of CH4 hydrate in a pressurized sediment core through volume-pressure relationships is complicated by two factors. First, significant quantities of CH4-poor borehole water fill the PCS and come into contact with the core. This leads to dilution of CH4 concentration in interstitial water and, in many cases, decomposition of CH4 hydrate before a degassing experiment begins. Second, degassing experiments were conducted after the PCS had equilibrated in an ice-water bath (0ºC). This temperature is significantly lower than in situ values in the sediment formation before core recovery. Our results and interpretations for PCS cores collected on Leg 164 imply that pressurized containers formerly used by the Deep Sea Drilling Project (DSDP) and currently used by ODP are not appropriately designed for direct detection of gas hydrate in sediment at in situ conditions through volume-pressure relationships.
Resumo:
Extensive use of fossil fuels is leading to increasing CO2 concentrations in the atmosphere and causes changes in the carbonate chemistry of the oceans which represents a major sink for anthropogenic CO2. As a result, the oceans' surface pH is expected to decrease by ca. 0.4 units by the year 2100, a major change with potentially negative consequences for some marine species. Because of their carbonate skeleton, sea urchins and their larval stages are regarded as likely to be one of the more sensitive taxa. In order to investigate sensitivity of pre-feeding (2 days post-fertilization) and feeding (4 and 7 days post-fertilization) pluteus larvae, we raised Strongylocentrotus purpuratus embryos in control (pH 8.1 and pCO2 41 Pa e.g. 399 µatm) and CO2 acidified seawater with pH of 7.7 (pCO2 134 Pa e.g. 1318 µatm) and investigated growth, calcification and survival. At three time points (day 2, day 4 and day 7 post-fertilization), we measured the expression of 26 representative genes important for metabolism, calcification and ion regulation using RT-qPCR. After one week of development, we observed a significant difference in growth. Maximum differences in size were detected at day 4 (ca. 10 % reduction in body length). A comparison of gene expression patterns using PCA and ANOSIM clearly distinguished between the different age groups (Two way ANOSIM: Global R = 1) while acidification effects were less pronounced (Global R = 0.518). Significant differences in gene expression patterns (ANOSIM R = 0.938, SIMPER: 4.3% difference) were also detected at day 4 leading to the hypothesis that differences between CO2 treatments could reflect patterns of expression seen in control experiments of a younger larva and thus a developmental artifact rather than a direct CO2 effect. We found an up regulation of metabolic genes (between 10 to 20% in ATP-synthase, citrate synthase, pyruvate kinase and thiolase at day 4) and down regulation of calcification related genes (between 23 and 36% in msp130, SM30B, SM50 at day 4). Ion regulation was mainly impacted by up regulation of Na+/K+-ATPase at day 4 (15%) and down regulation of NHE3 at day 4 (45%). We conclude that in studies in which a stressor induces an alteration in the speed of development, it is crucial to employ experimental designs with a high time resolution in order to correct for developmental artifacts. This helps prevent misinterpretation of stressor effects on organism physiology.
Resumo:
Calcitic belemnite rostra are usually employed to perform paleoenvironmental studies based on geochemical data. However, several questions, such as their original porosity and microstructure, remain open, despite they are essential to make accurate interpretations based on geochemical analyses.This paper revisits and enlightens some of these questions. Petrographic data demonstrate that calcite crystals of the rostrum solidum of belemnites grow from spherulites that successively develop along the apical line, resulting in a “regular spherulithic prismatic” microstructure. Radially arranged calcite crystals emerge and diverge from the spherulites: towards the apex, crystals grow until a new spherulite is formed; towards the external walls of the rostrum, the crystals become progressively bigger and prismatic. Adjacent crystals slightly vary in their c-axis orientation, resulting in undulose extinction. Concentric growth layering develops at different scales and is superimposed and traversed by a radial pattern, which results in the micro-fibrous texture that is observed in the calcite crystals in the rostra.Petrographic data demonstrate that single calcite crystals in the rostra have a composite nature, which strongly suggests that the belemnite rostra were originally porous. Single crystals consistently comprise two distinct zones or sectors in optical continuity: 1) the inner zone is fluorescent, has relatively low optical relief under transmitted light (TL) microscopy, a dark-grey color under backscatter electron microscopy (BSEM), a commonly triangular shape, a “patchy” appearance and relatively high Mg and Na contents; 2) the outer sector is non-fluorescent, has relatively high optical relief under TL, a light-grey color under BSEM and low Mg and Na contents. The inner and fluorescent sectors are interpreted to have formed first as a product of biologically controlled mineralization during belemnite skeletal growth and the non-fluorescent outer sectors as overgrowths of the former, filling the intra- and inter-crystalline porosity. This question has important implications for making paleoenvironmental and/or paleoclimatic interpretations based on geochemical analyses of belemnite rostra.Finally, the petrographic features of composite calcite crystals in the rostra also suggest the non-classical crystallization of belemnite rostra, as previously suggested by other authors.