908 resultados para Vocal loading


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mechanisms for the evolution of convergent behavioral traits are largely unknown. Vocal learning is one such trait that evolved multiple times and is necessary in humans for the acquisition of spoken language. Among birds, vocal learning is evolved in songbirds, parrots, and hummingbirds. Each time similar forebrain song nuclei specialized for vocal learning and production have evolved. This finding led to the hypothesis that the behavioral and neuroanatomical convergences for vocal learning could be associated with molecular convergence. We previously found that the neural activity-induced gene dual specificity phosphatase 1 (dusp1) was up-regulated in non-vocal circuits, specifically in sensory-input neurons of the thalamus and telencephalon; however, dusp1 was not up-regulated in higher order sensory neurons or motor circuits. Here we show that song motor nuclei are an exception to this pattern. The song nuclei of species from all known vocal learning avian lineages showed motor-driven up-regulation of dusp1 expression induced by singing. There was no detectable motor-driven dusp1 expression throughout the rest of the forebrain after non-vocal motor performance. This pattern contrasts with expression of the commonly studied activity-induced gene egr1, which shows motor-driven expression in song nuclei induced by singing, but also motor-driven expression in adjacent brain regions after non-vocal motor behaviors. In the vocal non-learning avian species, we found no detectable vocalizing-driven dusp1 expression in the forebrain. These findings suggest that independent evolutions of neural systems for vocal learning were accompanied by selection for specialized motor-driven expression of the dusp1 gene in those circuits. This specialized expression of dusp1 could potentially lead to differential regulation of dusp1-modulated molecular cascades in vocal learning circuits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation project explores some of the technical and musical challenges that face pianists in a collaborative role—specifically, those challenges that may be considered virtuosic in nature. The material was chosen from the works of Rachmaninoff and Ravel because of the technically and musically demanding yet idiomatic piano writing. This virtuosic piano writing also extends into the collaborative repertoire. The pieces were also chosen to demonstrate these virtuosic elements in a wide variety of settings. Solo piano pieces were chosen to provide a point of departure, and the programmed works ranged from vocal to two-piano, to sonatas and a piano trio. The recitals were arranged to demonstrate as much contrast as possible, while being grouped by composer. The first recital was performed on April 24, 2009. This recital featured five songs of Rachmaninoff, as well as three solo piano preludes and his Suite No. 2 for two pianos. The second recital occurred on November 16, 2010. This recital featured the music of both Rachmaninoff and Ravel, as well as a short lecture introducing the solo work “Ondine” from Gaspard de la nuit by Ravel. Following the lecture were the Cinq mélodies populaires grecques and the program closed with the substantial Rachmaninoff Sonata for Cello and Piano. The final program was given on October 10, 2011. This recital featured the music of Ravel, and it included his Sonata for Violin and Piano, the Debussy Nocturnes transcribed for two pianos by Ravel, and the Piano Trio. The inclusion of a transcription of a work by another composer highlights Ravel’s particular style of writing for the piano. All of these recitals were performed at the Gildenhorn Recital Hall in the Clarice Smith Performing Arts Center at the University of Maryland. The recitals are recorded on compact discs, which can be found in the Digital Repository at the University of Maryland (DRUM).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of recycled aggregates has increased greatly over the last decade owing to enhanced environmental sensitivities. The level of performance required by such materials is dependent upon the applications for which they are used. Many recycled construction wastes have adequate shear strength in relation to various geotechnical applications. However, a possible drawback of these materials is the risk of crushing during repeated loading. The work reported in this paper examined two waste materials: crushed concrete and building debris, both regarded as construction wastes. Tests were also performed on traditionally used crushed rock, in this case basalt. The materials were subjected to repeated loading in a large direct shear apparatus. The amount of crushing was quantified by performing particle size analysis of the tested material. The results have shown that both recycled construction wastes were susceptible to particle crushing. The amount of crushing was influenced by both the vertical pressure and the number of loading cycles. This leads to a marked decrease in peak friction angle