963 resultados para Virulence factors
Resumo:
The fungi Pochonia chlamydosporia and Pochonia rubescens are parasites of nematode eggs and thus are biocontrol agents of nematodes. Proteolytic enzymes such as the S8 proteases VCP1 and P32, secreted during the pathogenesis of nematode eggs, are major virulence factors in these fungi. Recently, expression of these enzymes and of SCP1, a new putative S10 carboxypeptidase, was detected during endophytic colonization of barley roots by these fungi. In our study, we cloned the genomic and mRNA sequences encoding P32 from P. rubescens and SCP1 from P. chlamydosporia. P32 showed a high homology with the serine proteases Pr1A from the entomopathogenic fungus Metarhizium anisopliae and VCP1 from P. chlamydosporia (86% and 76% identity, respectively). However, the catalytic pocket of P32 showed differences in the amino acids of the substrate-recognition sites compared with the catalytic pockets of Pr1A and VCP1 proteases. Phylogenetic analysis of P32 suggests a common ancestor with protease Pr1A. SCP1 displays the characteristic features of a member of the S10 family of serine proteases. Phylogenetic comparisons show that SCP1 and other carboxypeptidases from filamentous fungi have an origin different from that of yeast vacuolar serine carboxypeptidases. Understanding protease genes from nematophagous fungi is crucial for enhancing the biocontrol potential of these organisms.
Resumo:
The production of virulence factors by many pathogenic microorganisms depends on the intercellular communication system called quorum sensing, which involves the production and release of signal molecules known as autoinducers. Based on this, new-therapeutic strategies have emerged for the treatment of a variety of infections, such as the enzymatic degradation of signaling molecules, known as quorum quenching (QQ). In this study, we present the screening of QQ activity amongst 450 strains isolated from a bivalve hatchery in Granada (Spain), and the selection of the strain PQQ-42, which degrades a wide range of N-acylhomoserine lactones (AHLs). The selected strain, identified as Alteromonas stellipolaris, degraded the accumulation of AHLs and reduced the production of protease and chitinase and swimming motility of a Vibrio species in co-cultivation experiments in vitro. In the bio-control experiment, strain PQQ-42 significantly reduced the pathogenicity of Vibrio mediterranei VibC-Oc-097 upon the coral Oculina patagonica showing a lower degree of tissue damage (29.25 ± 14.63%) in its presence, compared to when the coral was infected with V. mediterranei VibC-Oc-097 alone (77.53 ± 13.22%). Our results suggest that this AHL-degrading bacterium may have biotechnological applications in aquaculture.
Resumo:
Virulence factors from the ROP2-family have been extensively studied in Toxoplasma gondii, but in the closely related Neospora caninum only NcROP2Fam-1 has been partially characterized to date. NcROP40 is a member of this family and was found to be more abundantly expressed in virulent isolates. Both NcROP2Fam-1 and NcROP40 were evaluated as vaccine candidates and exerted a synergistic effect in terms of protection against vertical transmission in mouse models, which suggests that they may be relevant for parasite pathogenicity. NcROP40 is localized in the rhoptry bulbs of tachyzoites and bradyzoites, but in contrast to NcROP2Fam-1, the protein does not associate with the parasitophorous vacuole membrane due to the lack of arginine-rich amphipathic helix in its sequence. Similarly to NcROP2Fam-1, NcROP40 mRNA levels are highly increased during tachyzoite egress and invasion. However, NcROP40 up-regulation does not appear to be linked to the mechanisms triggering egress. In contrast to NcROP2Fam-1, phosphorylation of NcROP40 was not observed during egress. Besides, NcROP40 secretion into the host cell was not successfully detected by immunofluorescence techniques. These findings indicate that NcROP40 and NcROP2Fam-1 carry out different functions, and highlight the need to elucidate the role of NcROP40 within the lytic cycle and to explain its relative abundance in tachyzoites.
Resumo:
The las and rhl quorum sensing (QS) systems regulate the expression of several genes in response to cell density changes in Pseudomonas aeruginosa. Many of these genes encode surface-associated or secreted virulence factors. Proteins from stationary phase culture supernatants were collected from wild-type and P. aeruginosa PAO1 mutants deficient in one or more of the lasRI, rhIRI and vfr genes and analysed using two-dimensional gel electrophoresis. All mutants released significantly lower amounts of protein than the wild-type. Protein spot patterns from each strain were compared using image analysis and visible spot differences were identified using mass spectrometry. Several previously unknown OS-regulated proteins were characterized, including an aminopeptidase (PA2939), an endoproteinase (PrpL) and a unique 'hypothetical' protein (PA0572), which could not be detected in the culture supernatants of Delta/as mutants, although they were unaffected in Deltarhl mutants. Chitin-binding protein (CbpD) and a hypothetical protein (PA4944) with similarity to host factor I (HF-1) could not be detected when any of the lasRI or rhIRI genes were disrupted. Fourteen proteins were present at significantly greater levels in the culture supernatants of OS mutants, suggesting that QS may also negatively control the expression of some genes. Increased levels of two-partner secretion exoproteins (PA0041 and PA4625) were observed and may be linked to increased stability of their cognate transporters in a CS-defective background. Known QS-regulated extracellular proteins, including elastase (lasB), LasA protease (lasA) and alkaline metalloproteinase (aprA) were also detected.
Resumo:
Infections caused by community-acquired (CA)-methicillin-resistant Staphylococcus aureus (MRSA) have been reported worldwide. We assessed whether any common genetic markers existed among 117 CA-MRSA isolates from the United States, France, Switzerland, Australia, New Zealand, and Western Samoa by performing polymerase chain reaction for 24 virulence factors and the methicillin-resistance determinant. The genetic background of the strain was analyzed by pulsed-field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST). The CA-MRSA strains shared a type IV SCCmec cassette and the Panton-Valentine leukocidin locus, whereas the distribution of the other toxin genes was quite specific to the strains from each continent. PFGE and MLST analysis indicated distinct genetic backgrounds associated with each geographic origin, although predominantly restricted to the agr3 background. Within each continent, the genetic background of CA-MRSA strains did not correspond to that of the hospital-acquired MRSA.
Resumo:
Pseudomonas aeruginosa is an important pathogen in immunocompromised patients and secretes a diverse set of virulence factors that aid colonization and influence host cell defenses. An important early step in the establishment of infection is the production of type III-secreted effectors translocated into host cells by the bacteria. We used cDNA microarrays to compare the transcriptomic response of lung epithelial cells to P. aeruginosa mutants defective in type IV pili, the type III secretion apparatus, or in the production of specific type III-secreted effectors. Of the 18,000 cDNA clones analyzed, 55 were induced or repressed after 4 It of infection and could be classified into four different expression patterns. These include (i) host genes that are induced or repressed in a type III secretion-independent manner (32 clones), (ii) host genes induced specifically by ExoU (20 clones), and (iii) host genes induced in an ExoU-independent but type III secretion dependent manner (3 clones). In particular, ExoU was essential for the expression of immediate-early response genes, including the transcription factor c-Fos. ExoU-dependent gene expression was mediated in part by early and transient activation of the AN transcription factor complex. In conclusion, the present study provides a detailed insight into the response of epithelial cells to infection and indicates the significant role played by the type III virulence mechanism in the initial host response.
Resumo:
Virulence of the opportunistic pathogen Pseudomonas aeruginosa involves the coordinate expression of a wide range of virulence factors including type IV pili which are required for colonization of host tissues and are associated with a form of surface translocation termed twitching motility. Twitching motility in P. aeruginosa is controlled by a complex signal transduction pathway which shares many modules in common with chemosensory systems controlling flagella rotation in bacteria and which is composed, in part, of the previously described proteins PilG, PilH, PilI, PilJ and PilK. Here we describe another three components of this pathway: ChpA, ChpB and ChpC, as well as two downstream genes, ChpD and ChpE, which may also be involved. The central component of the pathway, ChpA, possesses nine potential sites of phosphorylation: six histidine-containing phosphotransfer (HPt) domains, two novel serine- and threonine-containing phosphotransfer (SPt, TPt) domains and a CheY-like receiver domain at its C-terminus, and as such represents one of the most complex signalling proteins yet described in nature. We show that the Chp chemosensory system controls twitching motility and type IV pili biogenesis through control of pili assembly and/or retraction as well as expression of the pilin subunit gene pilA. The Chp system is also required for full virulence in a mouse model of acute pneumonia.
Resumo:
Mannose-binding type 1 pili are important virulence factors for the establishment of Escherichia coli urinary tract infections (UTIs). These infections are initiated by adhesion of uropathogenic E. coli to uroplakin receptors in the uroepithelium via the FimH adhesin located at the tips of type 1 pili. Blocking of bacterial adhesion is able to prevent infection. Here, we provide for the first time binding data of the molecular events underlying type 1 fimbrial adherence, by crystallographic analyses of the FimH receptor binding domains from a uropathogenic and a K-12 strain, and affinity measurements with mannose, common mono- and disaccharides, and a series of alkyl and aryl mannosides. Our results illustrate that the lectin domain of the FimH adhesin is a stable and functional entity and that an exogenous butyl alpha- D-mannoside, bound in the crystal structures, exhibits a significantly better affinity for FimH (K-d = 0.15 muM) than mannose (K-d = 2.3 muM). Exploration of the binding affinities of alpha-D-mannosides with longer alkyl tails revealed affinities up to 5 nM. Aryl mannosides and fructose can also bind with high affinities to the FimH lectin domain, with a 100-fold improvement and 15-fold reduction in affinity, respectively, compared with mannose. Taken together, these relative FimH affinities correlate exceptionally well with the relative concentrations of the same glycans needed for the inhibition of adherence of type 1 piliated E. coli. We foresee that our findings will spark new ideas and initiatives for the development of UTI vaccines and anti-adhesive drugs to prevent anticipated and recurrent UTIs.
Resumo:
Aim: Concentrations of antimicrobials below minimum inhibitory concentration (subMIC) may reduce the production by Pseudomonas aeruginosa of virulence factors such as elastase. We sought to determine whether the reduction in elastase production may be mediated by a reduction in acyl-homoserine lactones. Methods: Pseudomonas aeruginosa in broth was exposed to three conditions for ceftazidime and tobramycin: control, 6% MIC and 25% MIC. Elastase was assayed using elastin congo red. N-(3-Oxododecanoyl)-homoserine lactone (C12-HSL) and N-butyryl-homoserine lactone (C4-HSL) were assayed using biosensor Escherichia coli. Results: Elastase was unchanged with ceftazidime. Elastase was reduced by 16% at 6% MIC tobramycin and reduced by 70% at 25% MIC tobramycin (P
Resumo:
Periodontitis is a chronic inflammatory disease that results in extensive soft and hard tissue destruction of the periodontium. Porphyromonas gingivalis possesses an array of virulence factors and has been shown to induce expression of inducible nitric oxide synthase (iNOS) in inflammatory cells. The aim of this study was to investigate the effect of eliminating iNOS in a murine model of P. gingivalis infection. This was achieved by utilizing a P. gingivalis-induced skin abscess model, and an alveolar bone loss model employing an oral infection of P. gingivalis in iNOS knockout mice. The results indicated that iNOS knockout mice exhibit more extensive soft tissue damage and alveolar bone loss in response to P. gingivalis infection compared to wild-type mice. The local immune response to P. gingivalis in iNOS knockout mice was characterized by increased numbers of polymorphonuclear monocytes, while the systemic immune response was characterized by high levels of interleukin-12. The iNOS is required for an appropriate response to P. gingivalis infection.
Resumo:
The contribution of enterotoxigenic Escherichia coli (ETEC) to pre-weaning diarrhoea was investigated over a 6 month period at five selected commercial piggeries (CPs) in north Vietnam with at least 100 sows each. Diarrhoea was found to affect 71(.)5% of the litters born during the period of study. Of 406 faecal specimens submitted for bacteriological culture, 200 (49(.)3%) yielded a heavy pure culture of E coli and 126(31 %)were confirmed by PCR to carry at least one of eight porcine ETEC virulence genes. ETEC was responsible for 43% of cases of diarrhoea in neonatal pigs during the first 4 days of life and 23(.)9% of the remaining cases up until the age of weaning. Pathotypes were determined by PCR for the 126 ETEC isolates together with 44 ETEC isolates obtained from village pigs (VPs) raised by smallholder farmers. The CP isolates belonged to five pathotypes, four of which were also identified in VP isolates. Haemolytic serogroup O149: K91 isolates that belonged to F4/STa/STb/LT were most commonly identified in both CPs (33 % of isolates) and VPs (45(.)5%). Other combinations identified in both production systems included O64 (F5/STa), O101 (F4/STa/STb) and O-nontypable (F-/STb). A high proportion of CP isolates (22(.)3 %) possessed all three enterotoxins (STa/STWLT), lacked the genes for all five tested fimbriae (F4, F5, F6, F41 and F18) and belonged to serogroup O8. These unusual 08 F- isolates were haemolytic and were isolated from all ages of diarrhoeic piglets at each CP, suggesting that they have pathogenic potential.
Resumo:
Escherichia coli is the most common organism associated with asymptomatic bacteriuria (ABU). In contrast to uropathogenic E. coli (UPEC), which causes symptomatic urinary tract infections (UTI), very little is known about the mechanisms by which these strains colonize the human urinary tract. The prototype ABU E. coli strain 83972 was originally isolated from a girl who had carried it asymptomatically for 3 years. Deliberate colonization of UTI-susceptible individuals with E. coli 83972 has been used successfully as an alternative approach for the treatment of patients who are refractory to conventional therapy. Colonization with strain 83972 appears to prevent infection with UPEC strains in such patients despite the fact that this strain is unable to express the primary adhesins involved in UTI, viz. P and type 1 fimbriae. Here we investigated the growth characteristics of E. coli 83972 in human urine and show that it can outcompete a representative spectrum of UPEC strains for growth in urine. The unique ability of ABU E. coli 83972 to outcompete UPEC in urine was also demonstrated in a murine model of human UTI, confirming the selective advantage over UPEC in vivo. Comparison of global gene expression profiles of E. coli 83972 grown in lab medium and human urine revealed significant differences in expression levels in the two media; significant down-regulation of genes encoding virulence factors such as hemolysin, lipid A, and capsular pollysaccharides was observed in cells grown in urine. Clearly, divergent abilities of ABU E. coli and UPEC to exploit human urine as a niche for persistence and survival suggest that these key differences may be exploited for preventative and/or therapeutic approaches.
Resumo:
Propionibacterium acnes, a common skin organism, is most notably recognized for its role in acne vulgaris. It also causes postoperative and device-related infections and has been associated with a number of other conditions such as sarcoidosis and synovitis, acne, pustulosis, hyperostosis and osteitis (SAPHO), although its precise role as a causative agent remains to be determined. Propionibacterium acnes produces a number of virulence factors and is well known for its inflammatory and immunomodulatory properties. Recent publication of the P. acnes genome should provide further insights into the pathogenic capabilities of the organism and potentially lead to the development of new therapies. © 2006 The Society for Applied Microbiology.
Resumo:
The continuing threat of infectious disease and future pandemics, coupled to the continuous increase of drug-resistant pathogens, makes the discovery of new and better vaccines imperative. For effective vaccine development, antigen discovery and validation is a prerequisite. The compilation of information concerning pathogens, virulence factors and antigenic epitopes has resulted in many useful databases. However, most such immunological databases focus almost exclusively on antigens where epitopes are known and ignore those for which epitope information was unavailable. We have compiled more than 500 antigens into the AntigenDB database, making use of the literature and other immunological resources. These antigens come from 44 important pathogenic species. In AntigenDB, a database entry contains information regarding the sequence, structure, origin, etc. of an antigen with additional information such as B and T-cell epitopes, MHC binding, function, gene-expression and post translational modifications, where available. AntigenDB also provides links to major internal and external databases. We shall update AntigenDB on a rolling basis, regularly adding antigens from other organisms and extra data analysis tools. AntigenDB is available freely at http://www.imtech.res.in/raghava/antigendb and its mirror site http://www.bic.uams.edu/raghava/antigendb.
Resumo:
Clostridium difficile is at present one of the most common nosocomial infections in the developed world. Hypervirulent strains (PCR ribotype 027) of C. difficile which produce enhanced levels of toxins have also been associated with other characteristics such as a greater rate of sporulation and resistance to fluoroquinolones. Infection due to C. difficile PCR ribotype 027 has also been associated with greater rates of morbidity and mortality. The aim of this thesis was to investigate both the phenotypic and genotypic characteristics of two populations of toxigenic clinical isolates of C. difficile which were recovered from two separate hospital trusts within the UK. Phenotypic characterisation of the isolates was undertaken using analytical profile indexes (APIs), minimum inhibitory concentrations(MICs) and S-layer protein typing. In addition to this, isolates were also investigated for the production of a range of extracellular enzymes as potential virulence factors. Genotypic characterisation was performed using a random amplification of polymorphic DNA(RAPD) PCR protocol which was fully optimised in this study, and the gold standard method, PCR ribotyping. The discriminatory power of both methods was compared and the similarity between the different isolates also analysed. Associations between the phenotypic and genotypic characteristics and the recovery location of the isolate were then investigated. Extracellular enzyme production and API testing revealed little variation between the isolates; with S-layer typing demonstrating low discrimination. Minimum inhibitory concentrations did not identify any resistance towards either vancomycin or metronidazole; there were however significant differences in the distribution of antibiogram profiles of isolates recovered from the two different trusts. The RAPD PCR protocol was successfully optimised and alongside PCR ribotyping, effectively typed all of the clinical isolates and also identified differences in the number of types defined between the two locations. Both PCR ribotyping and RAPD demonstrated similar discriminatory power; however, the two genotyping methods did not generate amplicons that mapped directly onto each other and therefore clearly characterised isolates based on different genomic markers. The RAPD protocol also identified different subtypes within PCR ribotypes, therefore demonstrating that all isolates defined as a particular PCR ribotype were not the same strain. No associations could be demonstrated between the phenotypic and genotypic characteristics observed; however, the location from which an isolate was recovered did appear to influence antibiotic resistance and genotypic characteristics. The phenotypic and genotypic characteristics observed amongst the C. difficile isolates in this study, may provide a basis for the identification of further targets which may be potentially incorporated into future methods for the characterisation of C. difficile isolates.