964 resultados para Videotape recording
Resumo:
Thin solid films were extensively used in the making of solar cells, cutting tools, magnetic recording devices, etc. As a result, the accurate measurement of mechanical properties of the thin films, such as hardness and elastic modulus, was required. The thickness of thin films normally varies from tens of nanometers to several micrometers. It is thus challenging to measure their mechanical properties. In this study, a nanoscratch method was proposed for hardness measurement. A three-dimensional finite element method (3-D FEM) model was developed to validate the nanoscratch method and to understand the substrate effect during nanoscratch. Nanoindentation was also used for comparison. The nanoscratch method was demonstrated to be valuable for measuring hardness of thin solid films.
Resumo:
This chapter describes how, as YouTube has scaled up both as a platform and as a company, its business model and the consequences for its copyright regulation strategies have co-evolved, and so too the boundaries between amateur and professional media have shifted and blurred in particular ways. As YouTube, Inc moves to more profitably arrange and stabilise the historically contentious relations among rights-holders, uploaders, advertisers and audiences, some forms of amateur video production have become institutionalised and professionalised, while others have been further marginalised and driven underground or to other, more forgiving, platforms.
Resumo:
Background: Few studies have specifically investigated the functional effects of uncorrected astigmatism on measures of reading fluency. This information is important to provide evidence for the development of clinical guidelines for the correction of astigmatism. Methods: Participants included 30 visually normal, young adults (mean age 21.7 ± 3.4 years). Distance and near visual acuity and reading fluency were assessed with optimal spectacle correction (baseline) and for two levels of astigmatism, 1.00DC and 2.00DC, at two axes (90° and 180°) to induce both against-the-rule (ATR) and with-the-rule (WTR) astigmatism. Reading and eye movement fluency were assessed using standardized clinical measures including the test of Discrete Reading Rate (DRR), the Developmental Eye Movement (DEM) test and by recording eye movement patterns with the Visagraph (III) during reading for comprehension. Results: Both distance and near acuity were significantly decreased compared to baseline for all of the astigmatic lens conditions (p < 0.001). Reading speed with the DRR for N16 print size was significantly reduced for the 2.00DC ATR condition (a reduction of 10%), while for smaller text sizes reading speed was reduced by up to 24% for the 1.00DC ATR and 2.00DC condition in both axis directions (p<0.05). For the DEM, sub-test completion speeds were significantly impaired, with the 2.00DC condition affecting both vertical and horizontal times and the 1.00DC ATR condition affecting only horizontal times (p<0.05). Visagraph reading eye movements were not significantly affected by the induced astigmatism. Conclusions: Induced astigmatism impaired performance on selected tests of reading fluency, with ATR astigmatism having significantly greater effects on performance than did WTR, even for relatively small amounts of astigmatic blur of 1.00DC. These findings have implications for the minimal prescribing criteria for astigmatic refractive errors.
Resumo:
Women are underrepresented in science, technology, engineering and mathematics (STEM) university coursework, reflecting long-standing gender issues that have existed in core middle-school STEM subject areas. Using data from a survey and written responses, we report on findings following the introduction of engineering education in middle school classes across three schools (grade level 7, n=122). The engineering experiences fused science, technology and mathematics concepts. The survey revealed higher percentages for girls than boys in 13 of the 24 items; however there were six items with a 20% difference in their perceptions about learning in STEM. For instance, despite girls recording that they have been provided equal or more opportunities than boys in STEM, they believed they do not do as well as boys (80% boys, 48% girls) or want to seek a career in STEM (39% boys, 17% girls). The written responses revealed gender differences across a number of themes in the students’ responses, including resources, group work, the nature and type of learning experiences, content knowledge, and teachers’ instructional style. Exposing students to STEM education facilitates an awareness of their learning and may assist girls to consider studying STEM subjects or STEM careers.
Resumo:
According to the diagnosis of schizophrenia in the DSM-IV-TR (American Psychiatric Association, 2000), negative symptoms are those personal characteristics that are thought to be reduced from normal functioning, while positive symptoms are aspects of functioning that exist as an excess or distortion of normal functioning. Negative symptoms are generally considered to be a core feature of people diagnosed with schizophrenia. However, negative symptoms are not always present in those diagnosed, and a diagnosis can be made with only negative or only positive symptoms, or with a combination of both. Negative symptoms include an observed loss of emotional expression (affective flattening), loss of motivation or self directedness (avolition), loss of speech (alogia), and also a loss of interests and pleasures (anhedonia). Positive symptoms include the perception of things that others do not perceive (hallucinations), and extraordinary explanations for ordinary events (delusions) (American Psychiatric Association, 2000). Both negative and positive symptoms are derived from watching the patient and thus do not consider the patient’s subjective experience. However, aspects of negative symptoms, such as observed affective flattening are highly contended. Within conventional psychiatry, the absence of emotional expression is assumed to coincide with an absence of emotional experience. Contrasting research findings suggests that patients who were observed to score low on displayed emotional expression, scored high on self ratings of emotional experience. Patients were also observed to be significantly lower on emotional expression when compared with others (Aghevli, Blanchard, & Horan, 2003; Selton, van der Bosch, & Sijben, 1998). It appears that there is little correlation between emotional experience and emotional expression in patients, and that observer ratings cannot help us to understand the subjective experience of the negative symptoms. This chapter will focus on research into the subjective experiences of negative symptoms. A framework for these experiences will be used from the qualitative research findings of the primary author (Le Lievre, 2010). In this study, the primary author found that subjective experiences of the negative symptoms belonged to one of the two phases of the illness experience; “transitioning into emotional shutdown” or “recovering from emotional shutdown”. This chapter will use the six themes from the phase of “transitioning into emotional shutdown”. This phase described the experience of turning the focus of attention away from the world and onto the self and the past, thus losing contact with the world and others (emotional shutdown). Transitioning into emotional shutdown involved; “not being acknowledged”, “relational confusion”, “not being expressive”, “reliving the past”, “detachment”, and “no sense of direction” (Le Lievre, 2010). Detail will be added to this framework of experience from other qualitative research in this area. We will now review the six themes that constitute a “transition into emotional shutdown” and corresponding previous research findings.
Resumo:
Traditional pedagogies in the arts in higher education focus largely on the studio experience in which a novice artist studies under one or more master teachers (e.g., Don, Garvey, & Sadeghpour, 2009). In more recent times, however, a shift in higher education curriculum and pedagogy in the arts has expanded this traditional conservatory model of training to include, among other components, career self-management and enterprise creation—in a word, entrepreneurship.This chapter examines the developing field of arts enterprise and arts entrepreneurship in higher education in a multinational context. The field is contextualized within the broader landscape of the creative industries and the consequential development of knowledge, skills, and the habits of mind necessary for artistic venture creation, sustainability, and success. Whereas the discourse about learning and teaching for business entrepreneurship is well established (e.g., Fiet, 2001), equivalent conversations about arts enterprise and entrepreneurship have only recently begun (Beckman, 2007, 2011; Essig, 2009). This chapter will address the contested definitions of key terms and concepts and also the question of how arts educators, although mindful of the pedagogic traditions of the arts school, are also drawing on the pedagogies of business entrepreneurship and cognitive theories of entrepreneurship to create innovative new transdisciplinary signature pedagogies for creative enterprise and entrepreneurship education in the arts.
Resumo:
Feedback on student performance, whether in the classroom or on written assignments, enables them to reflect on their understandings and restructure their thinking in order to develop more powerful ideas and capabilities. Research has identified a number of broad principles of good feedback practice. These include the provision of feedback that facilitates the development of reflection in learning; helps clarify what good performance is in terms of goals, criteria and expected standards; provides opportunities to close the gap between current and desired performance; delivers high quality information to students about their learning; and encourages positive motivational beliefs and self-esteem. However, high staff–student ratios and time pressures often result in a gulf between this ideal and reality. Whilst greater use of criteria referenced assessment has enabled an improvement in the extent of feedback being provided to students, this measure alone does not go far enough to satisfy the requirements of good feedback practice. Technology offers an effective and efficient means by which personalised feedback may be provided to students. This paper presents the findings of a trial of the use of the freely available Audacity program to provide individual feedback via MP3 recordings to final year Media Law students at the Queensland University of Technology on their written assignments. The trial has yielded wide acclaim by students as an effective means of explaining the exact reasons why they received the marks they were awarded, the things they did well and the areas needing improvement. It also showed that good feedback practice can be achieved without the burden of an increase in staff workload.
Resumo:
Modelling the power systems load is a challenge since the load level and composition varies with time. An accurate load model is important because there is a substantial component of load dynamics in the frequency range relevant to system stability. The composition of loads need to be charaterised because the time constants of composite loads affect the damping contributions of the loads to power system oscillations, and their effects vary with the time of the day, depending on the mix of motors loads. This chapter has two main objectives: 1) describe the load modelling in small signal using on-line measurements; and 2) present a new approach to develop models that reflect the load response to large disturbances. Small signal load characterisation based on on-line measurements allows predicting the composition of load with improved accuracy compared with post-mortem or classical load models. Rather than a generic dynamic model for small signal modelling of the load, an explicit induction motor is used so the performance for larger disturbances can be more reliably inferred. The relation between power and frequency/voltage can be explicitly formulated and the contribution of induction motors extracted. One of the main features of this work is the induction motor component can be associated to nominal powers or equivalent motors
Resumo:
Mixture models are a flexible tool for unsupervised clustering that have found popularity in a vast array of research areas. In studies of medicine, the use of mixtures holds the potential to greatly enhance our understanding of patient responses through the identification of clinically meaningful clusters that, given the complexity of many data sources, may otherwise by intangible. Furthermore, when developed in the Bayesian framework, mixture models provide a natural means for capturing and propagating uncertainty in different aspects of a clustering solution, arguably resulting in richer analyses of the population under study. This thesis aims to investigate the use of Bayesian mixture models in analysing varied and detailed sources of patient information collected in the study of complex disease. The first aim of this thesis is to showcase the flexibility of mixture models in modelling markedly different types of data. In particular, we examine three common variants on the mixture model, namely, finite mixtures, Dirichlet Process mixtures and hidden Markov models. Beyond the development and application of these models to different sources of data, this thesis also focuses on modelling different aspects relating to uncertainty in clustering. Examples of clustering uncertainty considered are uncertainty in a patient’s true cluster membership and accounting for uncertainty in the true number of clusters present. Finally, this thesis aims to address and propose solutions to the task of comparing clustering solutions, whether this be comparing patients or observations assigned to different subgroups or comparing clustering solutions over multiple datasets. To address these aims, we consider a case study in Parkinson’s disease (PD), a complex and commonly diagnosed neurodegenerative disorder. In particular, two commonly collected sources of patient information are considered. The first source of data are on symptoms associated with PD, recorded using the Unified Parkinson’s Disease Rating Scale (UPDRS) and constitutes the first half of this thesis. The second half of this thesis is dedicated to the analysis of microelectrode recordings collected during Deep Brain Stimulation (DBS), a popular palliative treatment for advanced PD. Analysis of this second source of data centers on the problems of unsupervised detection and sorting of action potentials or "spikes" in recordings of multiple cell activity, providing valuable information on real time neural activity in the brain.
Resumo:
Purpose: Experimental measurements have been made to investigate meaning of the change in voltage for the pulse gas metal arc welding (GMAW-P) process operating under different drop transfer modes. Design/methodology/approach: Welding experiments with different values of pulsing parameter and simultaneous recording of high speed camera pictures and welding signals (such as current and voltage) were used to identify different drop transfer modes in GMAW-P. The investigation is based on the synchronization of welding signals and high speed camera to study the behaviour of voltage signal under different drop transfer modes. Findings: The results reveal that the welding arc is significantly affected by the molten droplet detachment. In fact, results indicate that sudden increase and drop in voltage just before and after the drop detachment can be used to characterize the voltage behaviour of different drop transfer mode in GMAW-P. Research limitations/implications: The results show that voltage signal carry rich information about different drop transfer occurring in GMAW-P. Hence it’s possible to detect different drop transfer modes. Future work should concentrate on development of filters for detection of different drop transfer modes. Originality/value: Determination of drop transfer mode with GMAW-P is crucial for the appropriate selection of pulse welding parameters. As change in drop transfer mode results in poor weld quality in GMAW-P, so in order to estimate the working parameters and ensure stable GMAW-P understanding the voltage behaviour of different drop transfer modes in GMAW-P will be useful. However, in case of GMAW-P hardly any attempt is made to analyse the behaviour of voltage signal for different drop transfer modes. This paper analyses the voltage signal behaviour of different drop transfer modes for GMAW-P.
Resumo:
A broad range of positions is articulated in the academic literature around the relationship between recordings and live performance. Auslander (2008) argues that “live performance ceased long ago to be the primary experience of popular music, with the result that most live performances of popular music now seek to replicate the music on the recording”. Elliott (1995) suggests that “hit songs are often conceived and produced as unambiguous and meticulously recorded performances that their originators often duplicate exactly in live performances”. Wurtzler (1992) argues that “as socially and historically produced, the categories of the live and the recorded are defined in a mutually exclusive relationship, in that the notion of the live is premised on the absence of recording and the defining fact of the recorded is the absence of the live”. Yet many artists perform in ways that fundamentally challenge such positions. Whilst it is common practice for musicians across many musical genres to compose and construct their musical works in the studio such that the recording is, in Auslander’s words, the ‘original performance’, the live version is not simply an attempt to replicate the recorded version. Indeed in some cases, such replication is impossible. There are well known historical examples. Queen, for example, never performed the a cappella sections of Bohemian Rhapsody because it they were too complex to perform live. A 1966 recording of the Beach Boys studio creation Good Vibrations shows them struggling through the song prior to its release. This paper argues that as technology develops, the lines between the recording studio and live performance change and become more blurred. New models for performance emerge. In a 2010 live performance given by Grammy Award winning artist Imogen Heap in New York, the artist undertakes a live, improvised construction of a piece as a performative act. She invites the audience to choose the key for the track and proceeds to layer up the various parts in front of the audience as a live performance act. Her recording process is thus revealed on stage in real time and she performs a process that what would have once been confined to the recording studio. So how do artists bring studio production processes into the live context? What aspects of studio production are now performable and what consistent models can be identified amongst the various approaches now seen? This paper will present an overview of approaches to performative realisations of studio produced tracks and will illuminate some emerging relationships between recorded music and performance across a range of contexts.