492 resultados para Veno-vasculature
Resumo:
La tomografía axial computerizada (TAC) es la modalidad de imagen médica preferente para el estudio de enfermedades pulmonares y el análisis de su vasculatura. La segmentación general de vasos en pulmón ha sido abordada en profundidad a lo largo de los últimos años por la comunidad científica que trabaja en el campo de procesamiento de imagen; sin embargo, la diferenciación entre irrigaciones arterial y venosa es aún un problema abierto. De hecho, la separación automática de arterias y venas está considerado como uno de los grandes retos futuros del procesamiento de imágenes biomédicas. La segmentación arteria-vena (AV) permitiría el estudio de ambas irrigaciones por separado, lo cual tendría importantes consecuencias en diferentes escenarios médicos y múltiples enfermedades pulmonares o estados patológicos. Características como la densidad, geometría, topología y tamaño de los vasos sanguíneos podrían ser analizados en enfermedades que conllevan remodelación de la vasculatura pulmonar, haciendo incluso posible el descubrimiento de nuevos biomarcadores específicos que aún hoy en dípermanecen ocultos. Esta diferenciación entre arterias y venas también podría ayudar a la mejora y el desarrollo de métodos de procesamiento de las distintas estructuras pulmonares. Sin embargo, el estudio del efecto de las enfermedades en los árboles arterial y venoso ha sido inviable hasta ahora a pesar de su indudable utilidad. La extrema complejidad de los árboles vasculares del pulmón hace inabordable una separación manual de ambas estructuras en un tiempo realista, fomentando aún más la necesidad de diseñar herramientas automáticas o semiautomáticas para tal objetivo. Pero la ausencia de casos correctamente segmentados y etiquetados conlleva múltiples limitaciones en el desarrollo de sistemas de separación AV, en los cuales son necesarias imágenes de referencia tanto para entrenar como para validar los algoritmos. Por ello, el diseño de imágenes sintéticas de TAC pulmonar podría superar estas dificultades ofreciendo la posibilidad de acceso a una base de datos de casos pseudoreales bajo un entorno restringido y controlado donde cada parte de la imagen (incluyendo arterias y venas) está unívocamente diferenciada. En esta Tesis Doctoral abordamos ambos problemas, los cuales están fuertemente interrelacionados. Primero se describe el diseño de una estrategia para generar, automáticamente, fantomas computacionales de TAC de pulmón en humanos. Partiendo de conocimientos a priori, tanto biológicos como de características de imagen de CT, acerca de la topología y relación entre las distintas estructuras pulmonares, el sistema desarrollado es capaz de generar vías aéreas, arterias y venas pulmonares sintéticas usando métodos de crecimiento iterativo, que posteriormente se unen para formar un pulmón simulado con características realistas. Estos casos sintéticos, junto a imágenes reales de TAC sin contraste, han sido usados en el desarrollo de un método completamente automático de segmentación/separación AV. La estrategia comprende una primera extracción genérica de vasos pulmonares usando partículas espacio-escala, y una posterior clasificación AV de tales partículas mediante el uso de Graph-Cuts (GC) basados en la similitud con arteria o vena (obtenida con algoritmos de aprendizaje automático) y la inclusión de información de conectividad entre partículas. La validación de los fantomas pulmonares se ha llevado a cabo mediante inspección visual y medidas cuantitativas relacionadas con las distribuciones de intensidad, dispersión de estructuras y relación entre arterias y vías aéreas, los cuales muestran una buena correspondencia entre los pulmones reales y los generados sintéticamente. La evaluación del algoritmo de segmentación AV está basada en distintas estrategias de comprobación de la exactitud en la clasificación de vasos, las cuales revelan una adecuada diferenciación entre arterias y venas tanto en los casos reales como en los sintéticos, abriendo así un amplio abanico de posibilidades en el estudio clínico de enfermedades cardiopulmonares y en el desarrollo de metodologías y nuevos algoritmos para el análisis de imágenes pulmonares. ABSTRACT Computed tomography (CT) is the reference image modality for the study of lung diseases and pulmonary vasculature. Lung vessel segmentation has been widely explored by the biomedical image processing community, however, differentiation of arterial from venous irrigations is still an open problem. Indeed, automatic separation of arterial and venous trees has been considered during last years as one of the main future challenges in the field. Artery-Vein (AV) segmentation would be useful in different medical scenarios and multiple pulmonary diseases or pathological states, allowing the study of arterial and venous irrigations separately. Features such as density, geometry, topology and size of vessels could be analyzed in diseases that imply vasculature remodeling, making even possible the discovery of new specific biomarkers that remain hidden nowadays. Differentiation between arteries and veins could also enhance or improve methods processing pulmonary structures. Nevertheless, AV segmentation has been unfeasible until now in clinical routine despite its objective usefulness. The huge complexity of pulmonary vascular trees makes a manual segmentation of both structures unfeasible in realistic time, encouraging the design of automatic or semiautomatic tools to perform the task. However, this lack of proper labeled cases seriously limits in the development of AV segmentation systems, where reference standards are necessary in both algorithm training and validation stages. For that reason, the design of synthetic CT images of the lung could overcome these difficulties by providing a database of pseudorealistic cases in a constrained and controlled scenario where each part of the image (including arteries and veins) is differentiated unequivocally. In this Ph.D. Thesis we address both interrelated problems. First, the design of a complete framework to automatically generate computational CT phantoms of the human lung is described. Starting from biological and imagebased knowledge about the topology and relationships between structures, the system is able to generate synthetic pulmonary arteries, veins, and airways using iterative growth methods that can be merged into a final simulated lung with realistic features. These synthetic cases, together with labeled real CT datasets, have been used as reference for the development of a fully automatic pulmonary AV segmentation/separation method. The approach comprises a vessel extraction stage using scale-space particles and their posterior artery-vein classification using Graph-Cuts (GC) based on arterial/venous similarity scores obtained with a Machine Learning (ML) pre-classification step and particle connectivity information. Validation of pulmonary phantoms from visual examination and quantitative measurements of intensity distributions, dispersion of structures and relationships between pulmonary air and blood flow systems, show good correspondence between real and synthetic lungs. The evaluation of the Artery-Vein (AV) segmentation algorithm, based on different strategies to assess the accuracy of vessel particles classification, reveal accurate differentiation between arteries and vein in both real and synthetic cases that open a huge range of possibilities in the clinical study of cardiopulmonary diseases and the development of methodological approaches for the analysis of pulmonary images.
Resumo:
Iron is critical for symbiotic nitrogen fixation (SNF) as a key component ofmultiple ferroproteins involved in this biological process. In the model legume Medicago truncatula, iron is delivered by the vasculature to the infection/maturation zone (zone II) of the nodule, where it is released to the apoplast. From there, plasma membrane iron transporters move it into rhizobia-containing cells, where iron is used as the cofactor of multiple plant and rhizobial proteins (e.g. plant leghemoglobin and bacterial nitrogenase). MtNramp1 (Medtr3g088460) is the M. truncatula Natural Resistance-Associated Macrophage Protein family member, with the highest expression levels in roots and nodules. Immunolocalization studies indicate that MtNramp1 is mainly targeted to the plasma membrane. A loss-of-function nramp1 mutant exhibited reduced growth compared with the wild type under symbiotic conditions, but not when fertilized with mineral nitrogen. Nitrogenase activity was low in the mutant, whereas exogenous iron and expression of wild-type MtNramp1 in mutant nodules increased nitrogen fixation to normal levels. These data are consistent with a model in which MtNramp1 is the main transporter responsible for apoplastic iron uptake by rhizobia-infected cells in zone II.
Resumo:
Deficiency of blood coagulation factor V or tissue factor causes the death of mouse embryos by 10.5 days of gestation, suggesting that part of the blood coagulation system is necessary for development. This function is proposed to require either generation of the serine protease thrombin and cell signaling through protease-activated receptors or an activity of tissue factor that is distinct from blood clotting. We find that murine deficiency of prothrombin clotting factor 2 (Cf2) was associated with the death of approximately 50% of Cf2−/− embryos by embryonic day 10.5 (E10.5), and surviving embryos had characteristic defects in yolk sac vasculature. Most of the remaining Cf2−/− embryos died by E15.5, but those surviving to E18.5 appeared normal. The rare Cf2−/− neonates died of hemorrhage on the first postnatal day. These studies suggest that a part of the blood coagulation system is adapted to perform a developmental function. Other mouse models show that the absence of platelets or of fibrinogen does not cause fetal wastage. Therefore, the role of thrombin in development may be independent of its effects on blood coagulation and instead may involve signal transduction on cells other than platelets.
Resumo:
We have recently shown that VEGF functions as a survival factor for newly formed vessels during developmental neovascularization, but is not required for maintenance of mature vessels. Reasoning that expanding tumors contain a significant fraction of newly formed and remodeling vessels, we examined whether abrupt withdrawal of VEGF will result in regression of preformed tumor vessels. Using a tetracycline-regulated VEGF expression system in xenografted C6 glioma cells, we showed that shutting off VEGF production leads to detachment of endothelial cells from the walls of preformed vessels and their subsequent death by apoptosis. Vascular collapse then leads to hemorrhages and extensive tumor necrosis. These results suggest that enforced withdrawal of vascular survival factors can be applied to target preformed tumor vasculature in established tumors. The system was also used to examine phenotypes resulting from over-expression of VEGF. When expression of the transfected VEGF cDNA was continuously “on,” tumors became hyper-vascularized with abnormally large vessels, presumably arising from excessive fusions. Tumors were significantly less necrotic, suggesting that necrosis in these tumors is the result of insufficient angiogenesis.
Resumo:
Transgenic mice that overexpress mutant human amyloid precursor protein (APP) exhibit one hallmark of Alzheimer’s disease pathology, namely the extracellular deposition of amyloid plaques. Here, we describe significant deposition of amyloid β (Aβ) in the cerebral vasculature [cerebral amyloid angiopathy (CAA)] in aging APP23 mice that had striking similarities to that observed in human aging and Alzheimer’s disease. Amyloid deposition occurred preferentially in arterioles and capillaries and within individual vessels showed a wide heterogeneity (ranging from a thin ring of amyloid in the vessel wall to large plaque-like extrusions into the neuropil). CAA was associated with local neuron loss, synaptic abnormalities, microglial activation, and microhemorrhage. Although several factors may contribute to CAA in humans, the neuronal origin of transgenic APP, high levels of Aβ in cerebrospinal fluid, and regional localization of CAA in APP23 mice suggest transport and drainage pathways rather than local production or blood uptake of Aβ as a primary mechanism underlying cerebrovascular amyloid formation. APP23 mice on an App-null background developed a similar degree of both plaques and CAA, providing further evidence that a neuronal source of APP/Aβ is sufficient to induce cerebrovascular amyloid and associated neurodegeneration.
Resumo:
The protective effects of estrogen in the cardiovascular system result from both systemic effects and direct actions of the hormone on the vasculature. Two estrogen receptors have been identified, ERα and ERβ. We demonstrated previously that estrogen inhibits the response to vascular injury in both wild-type and ERα-deficient mice, and that ERβ is expressed in the blood vessels of each, suggesting a role for ERβ in the vascular protective effects of estrogen. In the present study, we examined the effect of estrogen administration on mouse carotid arterial injury in ERβ-deficient mice. Surprisingly, in ovariectomized female wild-type and ERβ knockout mice, 17β-estradiol markedly and equally inhibited the increase in vascular medial area and the proliferation of vascular smooth muscle cells after vascular injury. These data demonstrate that ERβ is not required for estrogen-mediated inhibition of the response to vascular injury, and suggest that either of the two known estrogen receptors is sufficient to protect against vascular injury, or that another unidentified estrogen receptor mediates the vascular protective effects of estrogen.
Resumo:
Lipocalin-type prostaglandin D synthase (L-PGDS) is localized in the central nervous system and male genital organs of various mammals and is secreted as β-trace into the closed compartment of these tissues separated from the systemic circulation. In this study, we found that the mRNA for the human enzyme was expressed most intensely in the heart among various tissues examined. In human autopsy specimens, the enzyme was localized immunocytochemically in myocardial cells, atrial endocardial cells, and a synthetic phenotype of smooth muscle cells in the arteriosclerotic intima, and accumulated in the atherosclerotic plaque of coronary arteries with severe stenosis. In patients with stable angina (75–99% stenosis), the plasma level of L-PGDS was significantly (P < 0.05) higher in the great cardiac vein (0.694 ± 0.054 μg/ml, n = 7) than in the coronary artery (0.545 ± 0.034 μg/ml), as determined by a sandwich enzyme immunoassay. However, the veno-arterial difference in the plasma L-PGDS concentration was not observed in normal subjects without stenosis. After a percutaneous transluminal coronary angioplasty was performed to compress the stenotic atherosclerotic plaques, the L-PGDS concentration in the cardiac vein decreased significantly (P < 0.05) to 0.610 ± 0.051 μg/ml at 20 min and reached the arterial level within 1 h. These findings suggest that L-PGDS is present in both endocardium and myocardium of normal subjects and the stenotic site of patients with stable angina and is secreted into the coronary circulation.
Resumo:
Autosomal dominant polycystic kidney disease (ADPKD), often caused by mutations in the PKD1 gene, is associated with life-threatening vascular abnormalities that are commonly attributed to the frequent occurrence of hypertension. A previously reported targeted mutation of the mouse homologue of PKD1 was not associated with vascular fragility, leading to the suggestion that the vascular lesion may be of a secondary nature. Here we demonstrate a primary role of PKD1 mutations in vascular fragility. Mouse embryos homozygous for the mutant allele (Pkd1L) exhibit s.c. edema, vascular leaks, and rupture of blood vessels, culminating in embryonic lethality at embryonic day 15.5. Kidney and pancreatic ductal cysts are present. The Pkd1-encoded protein, mouse polycystin 1, was detected in normal endothelium and the surrounding vascular smooth muscle cells. These data reveal a requisite role for polycystin 1 in maintaining the structural integrity of the vasculature as well as epithelium and suggest that the nature of the PKD1 mutation contributes to the phenotypic variance in ADPKD.
Resumo:
The LMO2 gene is activated by chromosomal translocations in human T cell acute leukemias, but in mouse embryogenesis, Lmo2 is essential for initiation of yolk sac and definitive hematopoiesis. The LMO2 protein comprises two LIM–zinc-finger-like protein interaction modules and functions by interaction with specific partners in DNA-binding transcription complexes. We have now investigated the role of Lmo2-associated transcription complexes in the formation of the vascular system by following the fate of Lmo2-null embryonic stem (ES) cells in mouse chimeras. Lmo2 is expressed in vascular endothelium, and Lmo2-null ES cells contributed to the capillary network normally until around embryonic day 9. However, after this time, marked disorganization of the vascular system was observed in those chimeric mice that have a high contribution of Lmo2-null ES cells. Moreover, Lmo2-null ES cells do not contribute to endothelial cells of large vessel walls of surviving chimeric mice after embryonic day 10. These results show that Lmo2 is not needed for de novo capillary formation from mesoderm but is necessary for angiogenic remodeling of the existing capillary network into mature vasculature. Thus, Lmo2-mediated transcription complexes not only regulate distinct phases of hematopoiesis but also angiogenesis, presumably by Lmo2 interacting with distinct partners in the different settings.
Resumo:
Vascular endothelial growth factor (VEGF), also known as vascular permeability factor, is a cytokine of central importance for the angiogenesis associated with cancers and other pathologies. Because angiogenesis often involves endothelial cell (EC) migration and proliferation within a collagen-rich extracellular matrix, we investigated the possibility that VEGF promotes neovascularization through regulation of collagen receptor expression. VEGF induced a 5- to 7-fold increase in dermal microvascular EC surface protein expression of two collagen receptors—the α1β1 and α2β1 integrins—through induction of mRNAs encoding the α1 and α2 subunits. In contrast, VEGF did not induce increased expression of the α3β1 integrin, which also has been implicated in collagen binding. Integrin α1-blocking and α2-blocking antibodies (Ab) each partially inhibited attachment of microvascular EC to collagen I, and α1-blocking Ab also inhibited attachment to collagen IV and laminin-1. Induction of α1β1 and α2β1 expression by VEGF promoted cell spreading on collagen I gels which was abolished by a combination of α1-blocking and α2-blocking Abs. In vivo, a combination of α1-blocking and α2-blocking Abs markedly inhibited VEGF-driven angiogenesis; average cross-sectional area of individual new blood vessels was reduced 90% and average total new vascular area was reduced 82% without detectable effects on the pre-existing vasculature. These data indicate that induction of α1β1 and α2β1 expression by EC is an important mechanism by which VEGF promotes angiogenesis and that α1β1 and α2β1 antagonists may prove effective in inhibiting VEGF-driven angiogenesis in cancers and other important pathologies.
Resumo:
Metastasis is the primary cause of death in human breast cancer. Metastasis to bone, lungs, liver, and brain involves dissemination of breast cancer cells via the bloodstream and requires adhesion within the vasculature. Blood cell adhesion within the vasculature depends on integrins, a family of transmembrane adhesion receptors, and is regulated by integrin activation. Here we show that integrin αvβ3 supports breast cancer cell attachment under blood flow conditions in an activation-dependent manner. Integrin αvβ3 was found in two distinct functional states in human breast cancer cells. The activated, but not the nonactivated, state supported tumor cell arrest during blood flow through interaction with platelets. Importantly, activated αvβ3 was expressed by freshly isolated metastatic human breast cancer cells and variants of the MDA-MB 435 human breast cancer cell line, derived from mammary fat pad tumors or distant metastases in severe combined immunodeficient mice. Expression of constitutively activated mutant αvβ3D723R, but not αvβ3WT, in MDA-MB 435 cells strongly promoted metastasis in the mouse model. Thus breast cancer cells can exhibit a platelet-interactive and metastatic phenotype that is controlled by the activation of integrin αvβ3. Consequently, alterations within tumors that lead to the aberrant control of integrin activation are expected to adversely affect the course of human breast cancer.
Resumo:
Notch proteins function as receptors for membrane-bound ligands (Jagged and Delta-like) to regulate cell-fate determination. We have investigated the role of Notch signaling in embryonic endothelium of the mouse by expressing an activated form of the Notch4 protein in vasculature under the regulation of the Flk1 (VEGFR) locus. Expression of activated Notch4 results in a growth and developmental delay and embryonic lethality at about 10 days postcoitum. The extent of the developing vasculature in mutant embryos was restricted, fewer small vessels were seen, and vascular networks were disorganized. The brain periphery of mutant embryos contained large dilated vessels with evidence of compromised vessel-wall integrity and large areas of necrosis; yolk-sac vasculature was abnormal. Expression of an activated form of Notch4 in embryonic vasculature leads to abnormal vessel structure and patterning, implicating the Notch pathway in phases of vascular development associated with vessel patterning and remodeling.
Resumo:
12/15-Lipoxygenase (LOX) activity is elevated in vascular diseases associated with impaired nitric oxide (⋅NO) bioactivity, such as hypertension and atherosclerosis. In this study, primary porcine monocytes expressing 12/15-LOX, rat A10 smooth muscle cells transfected with murine 12/15-LOX, and purified porcine 12/15-LOX all consumed ⋅NO in the presence of lipid substrate. Suppression of LOX diene conjugation by ⋅NO was also found, although the lipid product profile was unchanged. ⋅NO consumption by porcine monocytes was inhibited by the LOX inhibitor, eicosatetraynoic acid. Rates of arachidonate (AA)- or linoleate (LA)-dependent ⋅NO depletion by porcine monocytes (2.68 ± 0.03 nmol ⋅ min−1 ⋅ 106 cells−1 and 1.5 ± 0.25 nmol ⋅ min−1 ⋅ 106 cells−1, respectively) were several-fold greater than rates of ⋅NO generation by cytokine-activated macrophages (0.1–0.2 nmol ⋅ min−1 ⋅ 106 cells−1) and LA-dependent ⋅NO consumption by primary porcine monocytes inhibited ⋅NO activation of soluble guanylate cyclase. These data indicate that catalytic ⋅NO consumption by 12/15-LOX modulates monocyte ⋅NO signaling and suggest that LOXs may contribute to vascular dysfunction not only by the bioactivity of their lipid products, but also by serving as catalytic sinks for ⋅NO in the vasculature.
Resumo:
Cerebral cavernous malformation is a common disease of the brain vasculature of unknown cause characterized by dilated thin-walled sinusoidal vessels (caverns); these lesions cause varying clinical presentations which include headache, seizure, and hemorrhagic stroke. This disorder is frequently familial, with autosomal dominant inheritance. Using a general linkage approach in two extended cavernous malformation kindreds, we have identified linkage of this trait to chromosome 7q11.2-q21. Multipoint linkage analysis yields a peak logarithm of odds (lod) score of 6.88 with zero recombination with locus D7S669 and localizes the gene to a 7-cM region in the interval between loci ELN and D7S802.
Resumo:
Neovascularization that generates collateral blood flow can limit the extent of tissue damage after acute ischemia caused by occlusion of the primary blood supply. The neovascular response stimulated by the BB homodimeric form of recombinant platelet-derived growth factor (PDGF-BB) was evaluated for its capacity to protect tissue from necrosis in a rat skin flap model of acutely induced ischemia. Complete survival of the tissue ensued, when the original nutritive blood supply was occluded, as early as 5 days after local PDGF-BB application, and the presence of a patent vasculature was evident compared to control flaps. To further evaluate the vascular regenerative response, PDGF-BB was injected into the muscle/connective tissue bed between the separated ends of a divided femoral artery in rats. A patent new vessel that functionally reconnected the ends of the divided artery within the original 3- to 4-mm gap was regenerated 3 weeks later in all PDGF-BB-treated limbs. In contrast, none of the paired control limbs, which received vehicle with an inactive variant of PDGF-BB, had vessel regrowth (P < 0.001). The absence of a sustained inflammatory response and granulation tissue suggests locally delivered PDGF-BB may directly stimulate the angiogenic phenotype in endothelial cells. These findings indicate that PDGF-BB can generate functional new blood vessels and nonsurgically anastomose severed vessels in vivo. This study supports the possibility of a therapeutic modality for the salvage of ischemic tissue through exogenous cytokine-induced vascular reconnection.