944 resultados para Variable pricing model
Resumo:
Tras quince años de la “asociación estratégica UE-ALC”, los múltiples y profundos cambios en el sistema internacional han tenido gran impacto sobre estas relaciones birregionales. Por ello hay que replantear cuáles son los cambios en la percepciones mutuas de las dos regiones, y observar el nuevo contexto geopolítico, tomando nota de la pérdida de influencia de los EEUU en la región y el auge de Asia, especialmente China. La “asociación estratégica” no ha conducido ni a una convergencia de intereses ni a una reconocible compatibilidad normativa. Además, la UE ha perdido su papel de “modelo” para los procesos de integración, en una región que tiene aún más heterogeneidad por sus diferentes modelos de desarrollo. Por ello se hace necesario asumir una geometría variable para la adaptación de las relaciones birregionales a la realidad del siglo XXI.
Resumo:
Model based vision allows use of prior knowledge of the shape and appearance of specific objects to be used in the interpretation of a visual scene; it provides a powerful and natural way to enforce the view consistency constraint. A model based vision system has been developed within ESPRIT VIEWS: P2152 which is able to classify and track moving objects (cars and other vehicles) in complex, cluttered traffic scenes. The fundamental basis of the method has been previously reported. This paper presents recent developments which have extended the scope of the system to include (i) multiple cameras, (ii) variable camera geometry, and (iii) articulated objects. All three enhancements have easily been accommodated within the original model-based approach
Resumo:
Variable rate applications of nitrogen (N) are of environmental and economic interest. Regular measurements of soil N supply are difficult to achieve practically. Therefore accurate model simulations of soil N supply might provide a practical solution for site-specific management of N. Mineral N, an estimate of N supply, was simulated by the model SUNDIAL (Simulation of Nitrogen Dynamics In Arable Land) at more than 100 locations within three arable fields in Bedfordshire, UK. The results were compared with actual measurements. The outcomes showed that the spatial patterns of the simulations of mineral N corresponded to the measurements but the range of values was underestimated.
Resumo:
Models of the dynamics of nitrogen in soil (soil-N) can be used to aid the fertilizer management of a crop. The predictions of soil-N models can be validated by comparison with observed data. Validation generally involves calculating non-spatial statistics of the observations and predictions, such as their means, their mean squared-difference, and their correlation. However, when the model predictions are spatially distributed across a landscape the model requires validation with spatial statistics. There are three reasons for this: (i) the model may be more or less successful at reproducing the variance of the observations at different spatial scales; (ii) the correlation of the predictions with the observations may be different at different spatial scales; (iii) the spatial pattern of model error may be informative. In this study we used a model, parameterized with spatially variable input information about the soil, to predict the mineral-N content of soil in an arable field, and compared the results with observed data. We validated the performance of the N model spatially with a linear mixed model of the observations and model predictions, estimated by residual maximum likelihood. This novel approach allowed us to describe the joint variation of the observations and predictions as: (i) independent random variation that occurred at a fine spatial scale; (ii) correlated random variation that occurred at a coarse spatial scale; (iii) systematic variation associated with a spatial trend. The linear mixed model revealed that, in general, the performance of the N model changed depending on the spatial scale of interest. At the scales associated with random variation, the N model underestimated the variance of the observations, and the predictions were correlated poorly with the observations. At the scale of the trend, the predictions and observations shared a common surface. The spatial pattern of the error of the N model suggested that the observations were affected by the local soil condition, but this was not accounted for by the N model. In summary, the N model would be well-suited to field-scale management of soil nitrogen, but suited poorly to management at finer spatial scales. This information was not apparent with a non-spatial validation. (c),2007 Elsevier B.V. All rights reserved.
Resumo:
Observations show the oceans have warmed over the past 40 yr. with appreciable regional variation and more warming at the surface than at depth. Comparing the observations with results from two coupled ocean-atmosphere climate models [the Parallel Climate Model version 1 (PCM) and the Hadley Centre Coupled Climate Model version 3 (HadCM3)] that include anthropogenic forcing shows remarkable agreement between the observed and model-estimated warming. In this comparison the models were sampled at the same locations as gridded yearly observed data. In the top 100 m of the water column the warming is well separated from natural variability, including both variability arising from internal instabilities of the coupled ocean-atmosphere climate system and that arising from volcanism and solar fluctuations. Between 125 and 200 m the agreement is not significant, but then increases again below this level, and remains significant down to 600 m. Analysis of PCM's heat budget indicates that the warming is driven by an increase in net surface heat flux that reaches 0.7 W m(-2) by the 1990s; the downward longwave flux increases bv 3.7 W m(-2). which is not fully compensated by an increase in the upward longwave flux of 2.2 W m(-2). Latent and net solar heat fluxes each decrease by about 0.6 W m(-2). The changes in the individual longwave components are distinguishable from the preindustrial mean by the 1920s, but due to cancellation of components. changes in the net surface heat flux do not become well separated from zero until the 1960s. Changes in advection can also play an important role in local ocean warming due to anthropogenic forcing, depending, on the location. The observed sampling of ocean temperature is highly variable in space and time. but sufficient to detect the anthropogenic warming signal in all basins, at least in the surface layers, bv the 1980s.
Resumo:
The formulation of a new process-based crop model, the general large-area model (GLAM) for annual crops is presented. The model has been designed to operate on spatial scales commensurate with those of global and regional climate models. It aims to simulate the impact of climate on crop yield. Procedures for model parameter determination and optimisation are described, and demonstrated for the prediction of groundnut (i.e. peanut; Arachis hypogaea L.) yields across India for the period 1966-1989. Optimal parameters (e.g. extinction coefficient, transpiration efficiency, rate of change of harvest index) were stable over space and time, provided the estimate of the yield technology trend was based on the full 24-year period. The model has two location-specific parameters, the planting date, and the yield gap parameter. The latter varies spatially and is determined by calibration. The optimal value varies slightly when different input data are used. The model was tested using a historical data set on a 2.5degrees x 2.5degrees grid to simulate yields. Three sites are examined in detail-grid cells from Gujarat in the west, Andhra Pradesh towards the south, and Uttar Pradesh in the north. Agreement between observed and modelled yield was variable, with correlation coefficients of 0.74, 0.42 and 0, respectively. Skill was highest where the climate signal was greatest, and correlations were comparable to or greater than correlations with seasonal mean rainfall. Yields from all 35 cells were aggregated to simulate all-India yield. The correlation coefficient between observed and simulated yields was 0.76, and the root mean square error was 8.4% of the mean yield. The model can be easily extended to any annual crop for the investigation of the impacts of climate variability (or change) on crop yield over large areas. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Grass-based diets are of increasing social-economic importance in dairy cattle farming, but their low supply of glucogenic nutrients may limit the production of milk. Current evaluation systems that assess the energy supply and requirements are based on metabolisable energy (ME) or net energy (NE). These systems do not consider the characteristics of the energy delivering nutrients. In contrast, mechanistic models take into account the site of digestion, the type of nutrient absorbed and the type of nutrient required for production of milk constituents, and may therefore give a better prediction of supply and requirement of nutrients. The objective of the present study is to compare the ability of three energy evaluation systems, viz. the Dutch NE system, the agricultural and food research council (AFRC) ME system, and the feed into milk (FIM) ME system, and of a mechanistic model based on Dijkstra et al. [Simulation of digestion in cattle fed sugar cane: prediction of nutrient supply for milk production with locally available supplements. J. Agric. Sci., Cambridge 127, 247-60] and Mills et al. [A mechanistic model of whole-tract digestion and methanogenesis in the lactating dairy cow: model development, evaluation and application. J. Anim. Sci. 79, 1584-97] to predict the feed value of grass-based diets for milk production. The dataset for evaluation consists of 41 treatments of grass-based diets (at least 0.75 g ryegrass/g diet on DM basis). For each model, the predicted energy or nutrient supply, based on observed intake, was compared with predicted requirement based on observed performance. Assessment of the error of energy or nutrient supply relative to requirement is made by calculation of mean square prediction error (MSPE) and by concordance correlation coefficient (CCC). All energy evaluation systems predicted energy requirement to be lower (6-11%) than energy supply. The root MSPE (expressed as a proportion of the supply) was lowest for the mechanistic model (0.061), followed by the Dutch NE system (0.082), FIM ME system (0.097) and AFRCME system(0.118). For the energy evaluation systems, the error due to overall bias of prediction dominated the MSPE, whereas for the mechanistic model, proportionally 0.76 of MSPE was due to random variation. CCC analysis confirmed the higher accuracy and precision of the mechanistic model compared with energy evaluation systems. The error of prediction was positively related to grass protein content for the Dutch NE system, and was also positively related to grass DMI level for all models. In conclusion, current energy evaluation systems overestimate energy supply relative to energy requirement on grass-based diets for dairy cattle. The mechanistic model predicted glucogenic nutrients to limit performance of dairy cattle on grass-based diets, and proved to be more accurate and precise than the energy systems. The mechanistic model could be improved by allowing glucose maintenance and utilization requirements parameters to be variable. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we generalise a previously-described model of the error-prone polymerase chain reaction (PCR) reaction to conditions of arbitrarily variable amplification efficiency and initial population size. Generalisation of the model to these conditions improves the correspondence to observed and expected behaviours of PCR, and restricts the extent to which the model may explore sequence space for a prescribed set of parameters. Error-prone PCR in realistic reaction conditions is predicted to be less effective at generating grossly divergent sequences than the original model. The estimate of mutation rate per cycle by sampling sequences from an in vitro PCR experiment is correspondingly affected by the choice of model and parameters. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Estimation of a population size by means of capture-recapture techniques is an important problem occurring in many areas of life and social sciences. We consider the frequencies of frequencies situation, where a count variable is used to summarize how often a unit has been identified in the target population of interest. The distribution of this count variable is zero-truncated since zero identifications do not occur in the sample. As an application we consider the surveillance of scrapie in Great Britain. In this case study holdings with scrapie that are not identified (zero counts) do not enter the surveillance database. The count variable of interest is the number of scrapie cases per holding. For count distributions a common model is the Poisson distribution and, to adjust for potential heterogeneity, a discrete mixture of Poisson distributions is used. Mixtures of Poissons usually provide an excellent fit as will be demonstrated in the application of interest. However, as it has been recently demonstrated, mixtures also suffer under the so-called boundary problem, resulting in overestimation of population size. It is suggested here to select the mixture model on the basis of the Bayesian Information Criterion. This strategy is further refined by employing a bagging procedure leading to a series of estimates of population size. Using the median of this series, highly influential size estimates are avoided. In limited simulation studies it is shown that the procedure leads to estimates with remarkable small bias.
Resumo:
An input variable selection procedure is introduced for the identification and construction of multi-input multi-output (MIMO) neurofuzzy operating point dependent models. The algorithm is an extension of a forward modified Gram-Schmidt orthogonal least squares procedure for a linear model structure which is modified to accommodate nonlinear system modeling by incorporating piecewise locally linear model fitting. The proposed input nodes selection procedure effectively tackles the problem of the curse of dimensionality associated with lattice-based modeling algorithms such as radial basis function neurofuzzy networks, enabling the resulting neurofuzzy operating point dependent model to be widely applied in control and estimation. Some numerical examples are given to demonstrate the effectiveness of the proposed construction algorithm.
Resumo:
We compared output from 3 dynamic process-based models (DMs: ECOSSE, MILLENNIA and the Durham Carbon Model) and 9 bioclimatic envelope models (BCEMs; including BBOG ensemble and PEATSTASH) ranging from simple threshold to semi-process-based models. Model simulations were run at 4 British peatland sites using historical climate data and climate projections under a medium (A1B) emissions scenario from the 11-RCM (regional climate model) ensemble underpinning UKCP09. The models showed that blanket peatlands are vulnerable to projected climate change; however, predictions varied between models as well as between sites. All BCEMs predicted a shift from presence to absence of a climate associated with blanket peat, where the sites with the lowest total annual precipitation were closest to the presence/absence threshold. DMs showed a more variable response. ECOSSE predicted a decline in net C sink and shift to net C source by the end of this century. The Durham Carbon Model predicted a smaller decline in the net C sink strength, but no shift to net C source. MILLENNIA predicted a slight overall increase in the net C sink. In contrast to the BCEM projections, the DMs predicted that the sites with coolest temperatures and greatest total annual precipitation showed the largest change in carbon sinks. In this model inter-comparison, the greatest variation in model output in response to climate change projections was not between the BCEMs and DMs but between the DMs themselves, because of different approaches to modelling soil organic matter pools and decomposition amongst other processes. The difference in the sign of the response has major implications for future climate feedbacks, climate policy and peatland management. Enhanced data collection, in particular monitoring peatland response to current change, would significantly improve model development and projections of future change.
Resumo:
This paper is concerned with the use of a genetic algorithm to select financial ratios for corporate distress classification models. For this purpose, the fitness value associated to a set of ratios is made to reflect the requirements of maximizing the amount of information available for the model and minimizing the collinearity between the model inputs. A case study involving 60 failed and continuing British firms in the period 1997-2000 is used for illustration. The classification model based on ratios selected by the genetic algorithm compares favorably with a model employing ratios usually found in the financial distress literature.
Resumo:
This paper sets out the findings of a group of research and development projects carried out at the Department of Real Estate & Planning at the University of Reading and at Oxford Property Systems over the period 1999 – 2003. The projects have several aims: these are to identify the fundamental drivers of the pricing of different lease terms in the UK property sector; to identify current and best market practice and uncover the main variations in lease terms; to identify key issues in pricing lease terms; and to develop a model for the pricing of rent under a variety of lease variations. From the landlord’s perspective, the main factors driving the required ‘compensation’ for a lease term amendment include expected rental volatility, expected probability of tenant vacation, and the expected costs of tenant vacation. These data are used in conjunction with simulation technology to reflect the options inherent in certain lease types to explore the required rent adjustment. The resulting cash flows have interesting qualities which illustrate the potential importance of option pricing in a non-complex and practical way.
Resumo:
The recent global economic crisis is often associated with the development and pricing of mortgage-backed securities (i.e. MBSs) and underlying products (i.e. sub-prime mortgages). This work uses a rich database of MBS issues and represents the first attempt to price commercial MBSs (i.e. CMBSs) in the European market. Our results are consistent with research carried out in the US market and we find that bond-, mortgage-, real estate-related and multinational characteristics show different degrees of significance in explaining European CMBS spreads at issuance. Multiple linear regression analysis using a databank of CMBSs issued between 1997 and 2007 indicates a strong relationship with bond-related factors, followed by real estate and mortgage market conditions. We also find that multinational factors are significant, with country of issuance, collateral location and access to more liquid markets all being important in explaining the cost of secured funding for real estate companies. As floater coupon tranches tend to be riskier and exhibit higher spreads, we also estimate a model using this sub-set of data and results hold, hence reinforcing our findings. Finally, we estimate our model for both tranches A and B and find that real estate factors become relatively more important for the riskier investment products.
Resumo:
An efficient method of combining neutron diffraction data over an extended Q range with detailed atomistic models is presented. A quantitative and qualitative mapping of the organization of the chain conformation in both glass and liquid phase has been performed. The proposed structural refinement method is based on the exploitation of the intrachain features of the diffraction pattern by the use of internal coordinates for bond lengths, valence angles and torsion rotations. Models are built stochastically by assignment of these internal coordinates from probability distributions with limited variable parameters. Variation of these parameters is used in the construction of models that minimize the differences between the observed and calculated structure factors. A series of neutron scattering data of 1,4-polybutadiene at the region 20320 K is presented. Analysis of the experimental data yield bond lengths for C-C and C=C of 1.54 and 1.35 Å respectively. Valence angles of the backbone were found to be at 112 and 122.8 for the CCC and CC=C respectively. Three torsion angles corresponding to the double bond and the adjacent R and β bonds were found to occupy cis and trans, s(, trans and g( and trans states, respectively. We compare our results with theoretical predictions, computer simulations, RIS models, and previously reported experimental results.