874 resultados para VIRTUAL-REALITY
Resumo:
This paper introduces a novel interface designed to help blind and visually impaired people to explore and navigate on the Web. In contrast to traditionally used assistive tools, such as screen readers and magnifiers, the new interface employs a combination of both audio and haptic features to provide spatial and navigational information to users. The haptic features are presented via a low-cost force feedback mouse allowing blind people to interact with the Web, in a similar fashion to their sighted counterparts. The audio provides navigational and textual information through the use of non-speech sounds and synthesised speech. Interacting with the multimodal interface offers a novel experience to target users, especially to those with total blindness. A series of experiments have been conducted to ascertain the usability of the interface and compare its performance to that of a traditional screen reader. Results have shown the advantages that the new multimodal interface offers blind and visually impaired people. This includes the enhanced perception of the spatial layout of Web pages, and navigation towards elements on a page. Certain issues regarding the design of the haptic and audio features raised in the evaluation are discussed and presented in terms of recommendations for future work.
Resumo:
This paper presents some observations on how computer animation was used in the early years of a degree program in Electrical and Electronic Engineering to enhance the teaching of key skills and professional practice. This paper presents the results from two case studies. First, in a first year course which seeks to teach students how to manage and report on group projects in a professional way. Secondly, in a technical course on virtual reality, where the students are asked to use computer animation in a way that subliminally coerces them to come to terms with the fine detail of the mathematical principles that underlie 3D graphics, geometry, etc. as well as the most significant principles of computer architecture and software engineering. In addition, the findings reveal that by including a significant element of self and peer review processes into the assessment procedure students became more engaged with the course and achieved a deeper level of comprehension of the material in the course.
Resumo:
Although many studies have looked at the perceptual-cognitive strategies used to make anticipatory judgments in sport, few have examined the informational invariants that our visual system may be attuned to. Using immersive interactive virtual reality to simulate the aerodynamics of the trajectory of a ball with and without sidespin, the present study examined the ability of expert and novice soccer players to make judgments about the ball's future arrival position. An analysis of their judgment responses showed how participants were strongly influenced by the ball's trajectory. The changes in trajectory caused by sidespin led to erroneous predictions about the ball's future arrival position. An analysis of potential informational variables that could explain these results points to the use of a first-order compound variable combining optical expansion and optical displacement.
Resumo:
Previous studies have shown that balls subjected to spin induce large errors in perceptual judgements (Craig et al, 2006; Craig et al 2009) due to the additional accelerative force that causes the ball’s flight path to deviate from a standard parabolic trajectory. A recent review however, has suggested that the findings from such experiments may be imprecise due to the decoupling of perception and action and the reliance on the ventral system (Van der Kamp et al, 2008). The aim of this study was to present the same curved free kick trajectory simulations from the perception only studies (Craig et al, 2006; Craig et al, 2009) but this time allow participants to move to intercept the ball. By using immersive, interactive virtual reality technology participants were asked to control the movement of a virtual effector presented in a virtual soccer stadium so that it would make contact with a virtual soccer ball as it crossed the goal-line. As in the perception only studies the direction of spin had a significant effect on the participants’ responses (F(2,12)=222.340; p
Resumo:
A key to success in many sports stems from the ability to anticipate what a player is going to do next. In sporting duels such as a 1 vs. 1 in rugby, the attacker can try and beat the defender by using deceptive movement. Those strategies involve an evolution of the centre of mass (COM) in the medio-lateral plane, from a minimal state to maximal displacement just before the final reorientation. The aim of this work is to consider this displacement as a motion-gap, as outlined in Tau theory, as a potential variable that may specify deceptive movement and as a means of comparing anticipatory performance between mid-level players and novices in rugby. Using a virtual reality set-up, 8 mid-level rugby players (ML) and 8 novices (NOV) observed deceptive (DM) and non-deceptive movements (NDM). The global framework used an occlusion time paradigm with four occlusion times. Participants had to judge the final direction of the attacker after the different cuts-off. For each movement and at each occlusion time, we coupled the ability to predict the good final direction with the value of the COM displacement in the medio-lateral (COM M/L) plane or with the Tau of this parameter (Tau COM). Firstly, results show that the Tau COM is a more predictive optical variable than the simple COM M/L. Secondly, this optical variable Tau COM is used by both groups, and finally, with a specific methodology we showed that mid-level players have significantly better anticipatory ability than the novice group.
Resumo:
In the digital age, the hyperspace of virtual reality systems stands out as a new spatial notion creating a parallel world to the space we live in. In this alternative realm, the body transforms into a hyperbody, and begins to follow the white rabbit. Not only in real world but also in the Matrix world. The Matrix project of Andy and Larry Wachowski started with a feature film released in 1999. However, The Matrix is not only a film (trilogy). It is a concept, a universe that brings real space and hyperspace together. It is a world represented not only in science fiction films but also in The Animatrix that includes nine animated Matrix films directed by Peter Chung, Andy Jones, Yoshiaki Kawajiri and others, four of which are written by the Wachowskis. The same universe is used in Enter the Matrix, a digital game whose script was written and directed by the brothers and a comic book, The Matrix Comics, which includes twelve different stories by artists like Neil Gaiman and Goef Darrow. The Wachowskis played an active role in the creation and realization of all these “products” of different media. The comic book came last (November 2003), however it is possible to argue that everything came out of comics – the storyboards of the original film. After all the Wachowskis have a background in comics.
In this study, I will focus on the formal analysis of the science fiction world of The Matrix - as a representation of hyperspace - in different media, feature film, animated film, digital game and comic book, focusing on diverse forms of space that come into being as a result of medium differences. To unfold the different formal characters of film, animation, game and comics, concepts and features including framing, flattening, continuity, movement, montage, sound/text, light and color will be discussed. An analysis of these products will help to open up a discussion on the relation of form, media and representation.
Resumo:
Decision making is a fundamental clement of any sport, particularly open, fast, dynamic team sports such as football, basketball and rugby. At the elite level, athletes appear to consistently make good decisions in situations that are highly temporally constrained. To further understand how this is done has been the aim of researchers within the perception-action field for several decades. The purpose of this article is to present novel contributions, both theoretical and methodological, that are pushing the boundaries of this area of research. The theoretical framework (Ecological psychology) within which the work is posited will be described, followed by a description of Virtual Reality (VR) technology and how it relates to the theoretical aims. Finally, an applied example will be summarised in order to demonstrate how the theoretical approach and the methodological approach come together in practice.
Resumo:
Background: As bending free-kicks becomes the norm in modern day soccer, implications for goalkeepers have largely been ignored. Although it has been reported that poor sensitivity to visual acceleration makes it harder for expert goalkeepers to perceptually judge where the curved free-kicks will cross the goal line, it is unknown how this affects the goalkeeper's actual movements.
Methodology/Principal Findings: Here, an in-depth analysis of goalkeepers' hand movements in immersive, interactive virtual reality shows that they do not fully account for spin-induced lateral ball acceleration. Hand movements were found to be biased in the direction of initial ball heading, and for curved free-kicks this resulted in biases in a direction opposite to those necessary to save the free-kick. These movement errors result in less time to cover a now greater distance to stop the ball entering the goal. These and other details of the interceptive behaviour are explained using a simple mathematical model which shows how the goalkeeper controls his movements online with respect to the ball's current heading direction. Furthermore our results and model suggest how visual landmarks, such as the goalposts in this instance, may constrain the extent of the movement biases.
Conclusions: While it has previously been shown that humans can internalize the effects of gravitational acceleration, these results show that it is much more difficult for goalkeepers to account for spin-induced visual acceleration, which varies from situation to situation. The limited sensitivity of the human visual system for detecting acceleration, suggests that curved free-kicks are an important goal-scoring opportunity in the game of soccer.
Resumo:
To date, the usefulness of stereoscopic visual displays in research on manual interceptive actions has never been examined. In this study, we compared the catching movements of 8 right-handed participants (6 men, 2 women) in a real environment (with suspended balls swinging past the participant, requiring lateral hand movements for interception) with those in a situation in which similar virtual ball trajectories were displayed stereoscopically in a virtual reality system (Cave Automated Virtual Environment [CAVE]; Cruz-Neira, Sandin, DeFranti, Kenyon, & Hart, 1992) with the head fixated. Catching the virtual ball involved grasping a lightweight ball attached to the palm of the hand. The results showed that, compared to real catching, hand movements in the CAVE were (a) initiated later, (b) less accurate, (c) smoother, and (d) aimed more directly at the interception point. Although the latter 3 observations might be attributable to the delayed movement initiation observed in the CAVE, this delayed initiation might have resulted from the use of visual displays. This suggests that stereoscopic visual displays such as present in many virtual reality systems should be used circumspectly in the experimental study of catching and should be used only to address research questions requiring no detailed analysis of the information-based online control of the catching movements.
Resumo:
The research presented in this paper proposes a set of design guidelines in the context of a Parkinson's Disease (PD) rehabilitation design framework for the development of serious games for the physical therapy of people with PD. The game design guidelines provided in the paper are informed by the study of the literature review and lessons learned from the pilot testing of serious games designed to suit the requirements of rehabilitation of patients with Parkinson's Disease. The proposed PD rehabilitation design framework employed for the games pilot testing utilises a low-cost, customized and off-the-shelf motion capture system (employing commercial game controllers) developed to cater for the unique requirement of the physical therapy of people with PD. Although design guidelines have been proposed before for the design of serious games in health, this is the first research paper to present guidelines for the design of serious games specifically for PD motor rehabilitation.
Resumo:
Key content
- Trainees face many challenges in learning the skill set required to perform laparoscopic surgery.
- The time spent in the operating room has been detrimentally impacted upon since the implementation of the European Working Time Directive. In order to address the deficit, surgical educators have looked to the benefits enjoyed in the aviation and sports industries in using simulation training.
Learning objectives
- To summarise the current understanding of the neuropsychological basis of learning a psychomotor skill.
- To clarify factors that influence the acquisition of these skills.
- To summarise how this information can be used in teaching and assessment of laparoscopic skills.
Ethical issues
- The use of virtual reality simulators may be able to form a part of the aptitude assessment in the selection process, in order to identify trainees with the desired attributes to progress into the training programmes. However, as skill improves with practice, is it ethical to exclude novices with poor initial performance assessment before allowing them the opportunities to improve?
Resumo:
This paper presents an automated design framework for the development of individual part forming tools for a composite stiffener. The framework uses parametrically developed design geometries for both the part and its layup tool. The framework has been developed with a functioning user interface where part / tool combinations are passed to a virtual environment for utility based assessment of their features and assemblability characteristics. The work demonstrates clear benefits in process design methods with conventional design timelines reduced from hours and days to minutes and seconds. The methods developed here were able to produce a digital mock up of a component with its associated layup tool in less than 3 minutes. The virtual environment presenting the design to the designer for interactive assembly planning was generated in 20 seconds. Challenges still exist in determining the level of reality required to provide an effective learning environment in the virtual world. Full representation of physical phenomena such as gravity, part clashes and the representation of standard build functions require further work to represent real physical phenomena more accurately.
Resumo:
Virtual Reality techniques are relatively new, having experienced significant development only during the last few years, in accordance with the progress achieved by computer science and hardware and software technologies. The study of such advanced design systems has led to the realization of an immersive environment in which new procedures for the evaluation of product prototypes, ergonomics and manufacturing operations have been simulated. The application of the environment realized to robotics, ergonomics, plant simulations and maintainability verifications has allowed us to highlight the advantages offered by a design methodology: the possibility of working on the industrial product in the first phase of conception; of placing the designer in front of the virtual reproduction of the product in a realistic way; and of interacting with the same concept. The aim of this book is to present an updated vision of VM through different aspects. We will describe the trends and results achieved in the automotive, aerospace and railway fields, in terms of the Digital Product Creation Process to design the product and the manufacturing process.
Resumo:
This thesis describes the design and implementation of a reliable centimeter-level indoor positioning system fully compatible with a conventional smartphone. The proposed system takes advantage of the smartphone audio I/O and processing capabilities to perform acoustic ranging in the audio band using non-invasive audio signals and it has been developed having in mind applications that require high accuracy, such as augmented reality, virtual reality, gaming and audio guides. The system works in a distributed operation mode, i.e. each smartphone is able to obtain its own position using only acoustic signals. To support the positioning system, a Wireless Sensor Network (WSN) of synchronized acoustic beacons is used. To keep the infrastructure in sync we have developed an Automatic Time Synchronization and Syntonization (ATSS) protocol with a standard deviation of the sync offset error below 1.25 μs. Using an improved Time Difference of Arrival (TDoA) estimation approach (which takes advantage of the beacon signals’ periodicity) and by performing Non-Line-of-Sight (NLoS) mitigation, we were able to obtain very stable and accurate position estimates with an absolute mean error of less than 10 cm in 95% of the cases and a mean standard deviation of 2.2 cm for a position refresh period of 350 ms.
Resumo:
A series of experiments is described, evaluating user recall of visualisations of historical chronology. Such visualisations are widely created but have not hitherto been evaluated. Users were tested on their ability to learn a sequence of historical events presented in a virtual environment (VE) fly-through visualisation, compared with the learning of equivalent material in other formats that are sequential but lack the 3D spatial aspect. Memorability is a particularly important function of visualisation in education. The measures used during evaluation are enumerated and discussed. The majority of the experiments reported compared three conditions, one using a virtual environment visualisation with a significant spatial element, one using a serial on-screen presentation in PowerPoint, and one using serial presentation on paper. Some aspects were trialled with groups having contrasting prior experience of computers, in the UK and Ukraine. Evidence suggests that a more complex environment including animations and sounds or music, intended to engage users and reinforce memorability, were in fact distracting. Findings are reported in relation to the age of the participants, suggesting that children at 11–14 years benefit less from, or are even disadvantaged by, VE visualisations when compared with 7–9 year olds or undergraduates. Finally, results suggest that VE visualisations offering a ‘landscape’ of information are more memorable than those based on a linear model. Keywords: timeline, chronographics