973 resultados para Typical load profile
Resumo:
This paper provides details on comparative testing of axle-to-chassis forces of two heavy vehicles (HVs) based on an experimental programme carried out in 2007. Dynamic forces at the air springs were measured against speed and roughness values for the test roads used. One goal of that programme was to determine whether dynamic axle-to-chassis forces could be reduced by using larger-than-standard diameter longitudinal air lines. This paper presents a portion of the methodology, analysis and results from that programme. Two analytical techniques and their results are presented. The first uses correlation coefficients of the forces between air springs and the second is a student’s t-test. These were used to determine the causality surrounding improved dynamic load sharing between heavy vehicle air springs with larger air lines installed longitudinally compared with the standard sized air lines installed on the majority of air-sprung heavy vehicles.
Resumo:
Thalidomide is an anti-angiogenic agent currently used to treat patients with malignant cachexia or multiple myeloma. Lenalidomide (CC-5013) is an immunomodulatory thalidomide analogue licensed in the United States of America (USA) for the treatment of a subtype of myelodysplastic syndrome. This two-centre, open-label phase I study evaluated dose-limiting toxicities in 55 patients with malignant solid tumours refractory to standard chemotherapies. Lenalidomide capsules were consumed once daily for 12 weeks according to one of the following three schedules: (I) 25 mg daily for the first 7 d, the daily dose increased by 25 mg each week up to a maximum daily dose of 150 mg; (II) 25 mg daily for 21 d followed by a 7-d rest period, the 4-week cycle repeated for 3 cycles; (III) 10 mg daily continuously. Twenty-six patients completed the study period. Two patients experienced a grade 3 hypersensitivity rash. Four patients in cohort I and 4 patients in cohort II suffered grade 3 or 4 neutropaenia. In 2 patients with predisposing medical factors, grade 3 cardiac dysrhythmia was recorded. Grade 1 neurotoxicity was detected in 6 patients. One complete and two partial radiological responses were measured by computed tomography scanning; 8 patients had stable disease after 12 weeks of treatment. Fifteen patients remained on treatment as named patients; 1 with metastatic melanoma remains in clinical remission 3.5 years from trial entry. This study indicates the tolerability and potential clinical efficacy of lenalidomide in patients with advanced solid tumours who have previously received multi-modality treatment. Depending on the extent of myelosuppressive pre-treatment, dose schedules (II) or (III) are advocated for large-scale trials of long-term administration. © 2006 Elsevier Ltd. All rights reserved.
Resumo:
Irradiance profile around the receiver tube (RT) of a parabolic trough collector (PTC) is a key effect of optical performance that affects the overall energy performance of the collector. Thermal performance evaluation of the RT relies on the appropriate determination of the irradiance profile. This article explains a technique in which empirical equations were developed to calculate the local irradiance as a function of angular location of the RT of a standard PTC using a vigorously verified Monte Carlo ray tracing model. A large range of test conditions including daily normal insolation, spectral selective coatings and glass envelop conditions were selected from the published data by Dudley et al. [1] for the job. The R2 values of the equations are excellent that vary in between 0.9857 and 0.9999. Therefore, these equations can be used confidently to produce realistic non-uniform boundary heat flux profile around the RT at normal incidence for conjugate heat transfer analyses of the collector. Required values in the equations are daily normal insolation, and the spectral selective properties of the collector components. Since the equations are polynomial functions, data processing software can be employed to calculate the flux profile very easily and quickly. The ultimate goal of this research is to make the concentrating solar power technology cost competitive with conventional energy technology facilitating its ongoing research.
Resumo:
This paper investigates: - correlation between transit route passenger loading and travel distance - its implications on quality of service (QoS) and resource productivity. It uses Automatic Fare Collection (AFC) data across a weekday on a premium bus line in Brisbane, Australia. A composite load-distance factor is proposed as a new measure for profiling transit route on-board passenger comfort QoS. Understanding these measures and their correlation is important for planning, design, and operational activities.
Resumo:
This paper investigates quality of service and resource productivity implications of transit route passenger loading and travel distance. Weekday Automatic Fare Collection data for a premium radial bus route in Brisbane, Australia, is used to investigate correlation between load factor and distance factor. Relationships between boardings and transit work indicate that distance factor generally increases with load factor. Time series analysis is then presented by examining each direction on an hour by hour basis. Inbound correlation is medium to strong across the entire span of service and strong for daytime services up to 19:30, while outbound correlation is strong across the entire span. Passengers tend to be making longer distance, peak direction commuter trips under the least comfortable conditions under stretched peak schedules than off-peak. Therefore productivity gains may be possible by adjusting fleet utilization during off-peak times. Weekday profiles by direction are established for a composite load-distance factor. A threshold corresponding to standing passengers on the Maximum Load Segment reveals that on-board loading and travel distance combined are more severe during the morning inbound peak than evening outbound peak, although the sharpness of the former suggests that encouraging shoulder peak travel during the morning would be more effective than evening peak. Further research suggested includes: consideration of travel duration factor, relating noise within hour to Peak Hour Factor, profiling load-distance factor across a range of case studies, and relating load-distance factor threshold to line length.
Resumo:
This paper merges the analysis of a case history and the simplified theoretical model related to a rather singular phenomenon that may happen in rotating machinery. Starting from the first, a small industrial steam turbine experienced a very strange behavior during megawatt load. When the unit was approaching the maximum allowed power, the temperature of the babbitt metal of the pads of the thrust bearing showed constant increase with an unrecoverable drift. Bearing inspection showed that pad trailing edge had the typical aspect of electrical pitting. This kind of damage was not reparable and bearing pads had to replaced. This problem occurred several times in sequence and was solved only by adding further ground brushes to the shaft-line. Failure analysis indicated electrodischarge machining as the root fault. A specific model, able to take into consideration the effect of electrical pitting and loading capacity decreasing as a consequence of the damage of the babbitt metal, is proposed in the paper and shows that the phenomenon causes the irretrievable failure of the thrust bearing.
Resumo:
The reliable operation of distribution systems is critically dependent on detailed understanding of load impacts on distribution transformer insulation systems. This paper estimates the impact of rooftop photovoltaic (PV) generation on a typical 200-kVA, 22/0.415-kV distribution transformer life under different operating conditions. This transformer supplies a suburban area with a high penetration of roof top photovoltaic systems. The transformer loads and the phase distribution of the PV systems are significantly unbalanced. Oil and hot-spot temperature and remnant life of distribution transformer under different PV and balance scenarios are calculated. It is shown that PV can significantly extend the transformer life.
Resumo:
Voltage unbalance is a major power quality problem in low voltage residential feeders due to the random location and rating of single-phase rooftop photovoltaic cells (PV). In this paper, two different improvement methods based on the application of series (DVR) and parallel (DSTATCOM) custom power devices are investigated to improve the voltage unbalance problem in these feeders. First, based on the load flow analysis carried out in MATLAB, the effectiveness of these two custom power devices is studied vis-à-vis the voltage unbalance reduction in urban and semi-urban/rural feeders containing rooftop PVs. Their effectiveness is studied from the installation location and rating points of view. Later, a Monte Carlo based stochastic analysis is carried out to investigate their efficacy for different uncertainties of load and PV rating and location in the network. After the numerical analyses, a converter topology and control algorithm is proposed for the DSTATCOM and DVR for balancing the network voltage at their point of common coupling. A state feedback control, based on pole-shift technique, is developed to regulate the voltage in the output of the DSTATCOM and DVR converters such that the voltage balancing is achieved in the network. The dynamic feasibility of voltage unbalance and profile improvement in LV feeders, by the proposed structure and control algorithm for the DSTATCOM and DVR, is verified through detailed PSCAD/EMTDC simulations.
Resumo:
This research is carried out by using finite element modelling of building prototypes with three different layouts (rectangular, octagonal and L-shaped) for three different heights (98.0 m, 147.0 m and 199.5 m) for the optimization of lateral load-resisting systems in composite high-rise buildings. Variations of lateral bracings (different number and varied placement along model height of belt-truss and outrigger floors) with RCC (reinforced cement concrete) core wall are used in composite high-rise building models. Prototypes of composite buildings are analysed for dynamic wind and seismic loads. The effects on serviceability (deflection and frequency) of models are studied and conclusions are deduced.
Resumo:
Terrorists usually target high occupancy iconic and public buildings using vehicle borne incendiary devices in order to claim a maximum number of lives and cause extensive damage to public property. While initial casualties are due to direct shock by the explosion, collapse of structural elements may extensively increase the total figure. Most of these buildings have been or are built without consideration of their vulnerability to such events. Therefore, the vulnerability and residual capacity assessment of buildings to deliberately exploded bombs is important to provide mitigation strategies to protect the buildings' occupants and the property. Explosive loads and their effects on a building have therefore attracted significant attention in the recent past. Comprehensive and economical design strategies must be developed for future construction. This research investigates the response and damage of reinforced concrete (RC) framed buildings together with their load bearing key structural components to a near field blast event. Finite element method (FEM) based analysis was used to investigate the structural framing system and components for global stability, followed by a rigorous analysis of key structural components for damage evaluation using the codes SAP2000 and LS DYNA respectively. The research involved four important areas in structural engineering. They are blast load determination, numerical modelling with FEM techniques, material performance under high strain rate and non-linear dynamic structural analysis. The response and damage of a RC framed building for different blast load scenarios were investigated. The blast influence region for a two dimensional RC frame was investigated for different load conditions and identified the critical region for each loading case. Two types of design methods are recommended for RC columns to provide superior residual capacities. They are RC columns detailing with multi-layer steel reinforcement cages and a composite columns including a central structural steel core. These are to provide post blast gravity load resisting capacity compared to typical RC column against a catastrophic collapse. Overall, this research broadens the current knowledge of blast and residual capacity analysis of RC framed structures and recommends methods to evaluate and mitigate blast impact on key elements of multi-storey buildings.
Resumo:
Fire safety has become an important part in structural design due to the ever increasing loss of properties and lives during fires. Conventionally the fire rating of load bearing wall systems made of Light gauge Steel Frames (LSF) is determined using fire tests based on the standard time-temperature curve in ISO834 [1]. However, modern commercial and residential buildings make use of thermoplastic materials, which mean considerably high fuel loads. Hence a detailed fire research study into the fire performance of LSF walls was undertaken using realistic design fire curves developed based on Eurocode parametric [2] and Barnett’s BFD [3] curves using both full scale fire tests and numerical studies. It included LSF walls without cavity insulation, and the recently developed externally insulated composite panel system. This paper presents the details of finite element models developed to simulate the full scale fire tests of LSF wall panels under realistic design fires. Finite element models of LSF walls exposed to realistic design fires were developed, and analysed under both transient and steady state fire conditions using the measured stud time-temperature curves. Transient state analyses were performed to simulate fire test conditions while steady state analyses were performed to obtain the load ratio versus time and failure temperature curves of LSF walls. Details of the developed finite element models and the results including the axial deformation and lateral deflection versus time curves, and the stud failure modes and times are presented in this paper. Comparison with fire test results demonstrate the ability of developed finite element models to predict the performance and fire resistance ratings of LSF walls under realistic design fires.
Resumo:
Performance of urban transit systems may be quantified and assessed using transit capacity and productive capacity in planning, design and operational management activities. Bunker (4) defines important productive performance measures of an individual transit service and transit line, which are extended in this paper to quantify efficiency and operating fashion of transit services and lines. Comparison of a hypothetical bus line’s operation during a morning peak hour and daytime hour demonstrates the usefulness of productiveness efficiency and passenger transmission efficiency, passenger churn and average proportion line length traveled to the operator in understanding their services’ and lines’ productive performance, operating characteristics, and quality of service. Productiveness efficiency can flag potential pass-up activity under high load conditions, as well as ineffective resource deployment. Proportion line length traveled can directly measure operating fashion. These measures can be used to compare between lines/routes and, within a given line, various operating scenarios and time horizons to target improvements. The next research stage is investigating within-line variation using smart card passenger data and field observation of pass-ups. Insights will be used to further develop practical guidance to operators.
Resumo:
This article content analyzes music in tourism TV commercials from 95 regions and countries to identify their general acoustic characteristics. The objective is to offer a general guideline in the postproduction of tourism TV commercials. It is found that tourism TV commercials tend to be produced in a faster tempo with beats per minute close to 120, which is rare to be found in general TV commercials. To compensate for the faster tempo (increased aural information load), less scenes (longer duration per scene) were edited into the footage. Production recommendations and future research are presented.
Resumo:
Despite significant changes in mainstream journalism in recent decades, journalistic fields beyond the news have been little explored. In an attempt to contribute to a deeper understanding of such fields, this article examines the role perceptions of 85 Australian travel journalists. By viewing travel journalism as a distinct field of practice that is affected by a unique mix of influences, this study identifies five dimensions of practitioners’ role perceptions. These relate to travel journalists’ views of themselves as Cultural Mediators, Critics, Entertainers, Information Providers and Travellers. In addition, the study examines in some depth the ethical standards of travel journalists. Determinants of these views and standards are explored. The study argues that, in light of travel journalists’ increasingly important role in reporting about foreign places, more remains to be done to promote travel stories that show a deeper understanding of other cultures and which contain a more critical appraisal of destinations.