880 resultados para Two-body correlation
Resumo:
Background Recovery strategies are often usedwith the intention of preventing orminimisingmuscle soreness after exercise. Whole-body cryotherapy, which involves a single or repeated exposure(s) to extremely cold dry air (below -100 °C) in a specialised chamber or cabin for two to four minutes per exposure, is currently being advocated as an effective intervention to reduce muscle soreness after exercise. Objectives To assess the effects (benefits and harms) of whole-body cryotherapy (extreme cold air exposure) for preventing and treating muscle soreness after exercise in adults. Search methods We searched the Cochrane Bone, Joint and Muscle Trauma Group Specialised Register, the Cochrane Central Register of Controlled Trials, MEDLINE, EMBASE, CINAHL, the British Nursing Index and the Physiotherapy Evidence Database. We also searched the reference lists of articles, trial registers and conference proceedings, handsearched journals and contacted experts. The searches were run in August 2015. Selection criteria We aimed to include randomised and quasi-randomised trials that compared the use of whole-body cryotherapy (WBC) versus a passive or control intervention (rest, no treatment or placebo treatment) or active interventions including cold or contrast water immersion, active recovery and infrared therapy for preventing or treating muscle soreness after exercise in adults. We also aimed to include randomised trials that compared different durations or dosages of WBC. Our prespecified primary outcomes were muscle soreness, subjective recovery (e.g. tiredness, well-being) and adverse effects. Data collection and analysis Two review authors independently screened search results, selected studies, assessed risk of bias and extracted and cross-checked data. Where appropriate, we pooled results of comparable trials. The random-effects model was used for pooling where there was substantial heterogeneity.We assessed the quality of the evidence using GRADE. Main results Four laboratory-based randomised controlled trials were included. These reported results for 64 physically active predominantly young adults (mean age 23 years). All but four participants were male. Two trials were parallel group trials (44 participants) and two were cross-over trials (20 participants). The trials were heterogeneous, including the type, temperature, duration and frequency of WBC, and the type of preceding exercise. None of the trials reported active surveillance of predefined adverse events. All four trials had design features that carried a high risk of bias, potentially limiting the reliability of their findings. The evidence for all outcomes was classified as ’very low’ quality based on the GRADE criteria. Two comparisons were tested: WBC versus control (rest or no WBC), tested in four studies; and WBC versus far-infrared therapy, also tested in one study. No studies compared WBC with other active interventions, such as cold water immersion, or different types and applications of WBC. All four trials compared WBC with rest or no WBC. There was very low quality evidence for lower self-reported muscle soreness (pain at rest) scores after WBC at 1 hour (standardised mean difference (SMD) -0.77, 95% confidence interval (CI) -1.42 to -0.12; 20 participants, 2 cross-over trials); 24 hours (SMD -0.57, 95%CI -1.48 to 0.33) and 48 hours (SMD -0.58, 95% CI -1.37 to 0.21), both with 38 participants, 2 cross-over studies, 1 parallel group study; and 72 hours (SMD -0.65, 95% CI -2.54 to 1.24; 29 participants, 1 cross-over study, 1 parallel group study). Of note is that the 95% CIs also included either no between-group differences or a benefit in favour of the control group. One small cross-over trial (9 participants) found no difference in tiredness but better well-being after WBC at 24 hours post exercise. There was no report of adverse events. One small cross-over trial involving nine well-trained runners provided very low quality evidence of lower levels of muscle soreness after WBC, when compared with infrared therapy, at 1 hour follow-up, but not at 24 or 48 hours. The same trial found no difference in well-being but less tiredness after WBC at 24 hours post exercise. There was no report of adverse events. Authors’ conclusions There is insufficient evidence to determine whether whole-body cryotherapy (WBC) reduces self-reportedmuscle soreness, or improves subjective recovery, after exercise compared with passive rest or no WBC in physically active young adult males. There is no evidence on the use of this intervention in females or elite athletes. The lack of evidence on adverse events is important given that the exposure to extreme temperature presents a potential hazard. Further high-quality, well-reported research in this area is required and must provide detailed reporting of adverse events.
Resumo:
Determining the genetic bases of adaptations and their roles in speciation is a prominent issue in evolutionary biology. Cichlid fish species flocks are a prime example of recent rapid radiations, often associated with adaptive phenotypic divergence from a common ancestor within a short period of time. In several radiations of freshwater fishes, divergence in ecomorphological traits - including body shape, colour, lips and jaws - is thought to underlie their ecological differentiation, specialization and, ultimately, speciation. The Midas cichlid species complex (Amphilophus spp.) of Nicaragua provides one of the few known examples of sympatric speciation where species have rapidly evolved different but parallel morphologies in young crater lakes. This study identified significant QTL for body shape using SNPs generated via ddRAD sequencing and geometric morphometric analyses of a cross between two ecologically and morphologically divergent, sympatric cichlid species endemic to crater Lake Apoyo: an elongated limnetic species (Amphilophus zaliosus) and a high-bodied benthic species (Amphilophus astorquii). A total of 453 genome-wide informative SNPs were identified in 240 F-2 hybrids. These markers were used to construct a genetic map in which 25 linkage groups were resolved. Seventy-two segregating SNPs were linked to 11 QTL. By annotating the two most highly supported QTL-linked genomic regions, genes that might contribute to divergence in body shape along the benthic-limnetic axis in Midas cichlid sympatric adaptive radiations were identified. These results suggest that few genomic regions of large effect contribute to early stage divergence in Midas cichlids.
Resumo:
The possible differences between sexes in patterns of morphological variation in geographical space have been explored only in gonochorist freshwater species. We explored patterns of body shape variation in geographical space in a marine sequential hermaphrodite species, Coris julis (L. 1758), analyzing variation both within and between colour phases, through the use of geometric morphometrics and spatially-explicit statistical analyses. We also tested for the association of body shape with two environmental variables: temperature and chlorophyll a concentration, as obtained from time-series of satellite-derived data. Both colour phases showed a significant morphological variation in geographical space and patterns of variation divergent between phases. Although the morphological variation was qualitatively similar, individuals in the initial colour phase showed a more marked variation than individuals in the terminal phase. Body shape showed a weak but significant correlation with environmental variables, which was more pronounced in primary specimens.
Resumo:
The concept of energy gap(s) is useful for understanding the consequence of a small daily, weekly, or monthly positive energy balance and the inconspicuous shift in weight gain ultimately leading to overweight and obesity. Energy gap is a dynamic concept: an initial positive energy gap incurred via an increase in energy intake (or a decrease in physical activity) is not constant, may fade out with time if the initial conditions are maintained, and depends on the 'efficiency' with which the readjustment of the energy imbalance gap occurs with time. The metabolic response to an energy imbalance gap and the magnitude of the energy gap(s) can be estimated by at least two methods, i.e. i) assessment by longitudinal overfeeding studies, imposing (by design) an initial positive energy imbalance gap; ii) retrospective assessment based on epidemiological surveys, whereby the accumulated endogenous energy storage per unit of time is calculated from the change in body weight and body composition. In order to illustrate the difficulty of accurately assessing an energy gap we have used, as an illustrative example, a recent epidemiological study which tracked changes in total energy intake (estimated by gross food availability) and body weight over 3 decades in the US, combined with total energy expenditure prediction from body weight using doubly labelled water data. At the population level, the study attempted to assess the cause of the energy gap purported to be entirely due to increased food intake. Based on an estimate of change in energy intake judged to be more reliable (i.e. in the same study population) and together with calculations of simple energetic indices, our analysis suggests that conclusions about the fundamental causes of obesity development in a population (excess intake vs. low physical activity or both) is clouded by a high level of uncertainty.
Resumo:
The aim of the study was to examine differences in total body water (TBW) measured using single-frequency (SF) and multi-frequency (MF) modes of bioelectrical impedance spectroscopy (BIS) in children and adults measured in different postures using the deuterium (2H) dilution technique as the reference. Twenty-three boys and 26 adult males underwent assessment of TBW using the dilution technique and BIS measured in supine and standing positions using two frequencies of the SF mode (50 kHz and 100 kHz) and the MF mode. While TBW estimated from the MF mode was comparable, extra-cellular fluid (ECF) and intra-cellular fluid (ICF) values differed significantly (p < 0.01) between the different postures in both groups. In addition, while estimated TBW in adult males using the MF mode was significantly (p < 0.01) greater than the result from the dilution technique, TBW estimated using the SF mode and prediction equation was significantly (p < 0.01) lower in boys. Measurement posture may not affect estimation of TBW in boys and adult males, however, body fluid shifts may still occur. In addition, technical factors, including selection of prediction equation, may be important when TBW is estimated from measured impedance.
Resumo:
A single-generation dataset consisting of 1,730 records from a selection program for high growth rate in giant freshwater prawn (GFP, Macrobrachium rosenbergii) was used to derive prediction equations for meat weight and meat yield. Models were based on body traits [body weight, total length and abdominal width (AW)] and carcass measurements (tail weight and exoskeleton-off weight). Lengths and width were adjusted for the systematic effects of selection line, male morphotypes and female reproductive status, and for the covariables of age at slaughter within sex and body weight. Body and meat weights adjusted for the same effects (except body weight) were used to calculate meat yield (expressed as percentage of tail weight/body weight and exoskeleton-off weight/body weight). The edible meat weight and yield in this GFP population ranged from 12 to 15 g and 37 to 45 %, respectively. The simple (Pearson) correlation coefficients between body traits (body weight, total length and AW) and meat weight were moderate to very high and positive (0.75–0.94), but the correlations between body traits and meat yield were negative (−0.47 to −0.74). There were strong linear positive relationships between measurements of body traits and meat weight, whereas relationships of body traits with meat yield were moderate and negative. Step-wise multiple regression analysis showed that the best model to predict meat weight included all body traits, with a coefficient of determination (R 2) of 0.99 and a correlation between observed and predicted values of meat weight of 0.99. The corresponding figures for meat yield were 0.91 and 0.95, respectively. Body weight or length was the best predictor of meat weight, explaining 91–94 % of observed variance when it was fitted alone in the model. By contrast, tail width explained a lower proportion (69–82 %) of total variance in the single trait models. It is concluded that in practical breeding programs, improvement of meat weight can be easily made through indirect selection for body trait combinations. The improvement of meat yield, albeit being more difficult, is possible by genetic means, with 91 % of the variation in the trait explained by the body and carcass traits examined in this study.
Resumo:
The aim of the study was to determine the reliability of body mass index based (BMI) cutoff values in diagnosing obesity among Sri Lankan children. Height, weight, waist circumference (WC) and hip circumference (HC) in 282 children were measured. Total body water was determined by deuterium dilution and fat mass (FM) derived using age and gender specific constants. A percentage FM of 30% for girls and 25% for boys were considered as cutoff levels for obesity. Two hundred and eighty two children (M/F: 158/124) were studied and 99 (80%) girls and 72 (45.5%) boys were obese based on % body fat. Eight (6.4%) girls and nine (5.7%) boys were obese based on International Obesity Task Force (IOTF) cutoff values. Percentage FM and WC centile charts were able to diagnose a significant proportion of children as true obese children. The FM and BMI were closely associated in both girls (r = 0.82, p < 0.001) and boys (r = 0.87, p < 0.001). Percentage FM and BMI had a very low but significant association; girls (r = 0.32, p < 0.001) and boys (r = 0.68, p < 0.001). FM had a significant association with WC and HC. BMI based cutoff values had a specificity of 100% but a very low sensitivity, varying between 8% and 23.6%. BMI is a poor indicator of the percentage fat and the commonly used cutoff values were not sensitive to detect cases of childhood obesity in Sri Lankan children.
Resumo:
The shoot represents the basic body plan in land plants. It consists of a repeated structure composed of stems and leaves. Whereas vascular plants generate a shoot in their diploid phase, non-vascular plants such as mosses form a shoot (called the gametophore) in their haploid generation. The evolution of regulatory mechanisms or genetic networks used in the development of these two kinds of shoots is unclear. TERMINAL EAR1-like genes have been involved in diploid shoot development in vascular plants. Here, we show that disruption of PpTEL1 from the moss Physcomitrella patens, causes reduced protonema growth and gametophore initiation, as well as defects in gametophore development. Leafy shoots formed on ΔTEL1 mutants exhibit shorter stems with more leaves per shoot, suggesting an accelerated leaf initiation (shortened plastochron), a phenotype shared with the Poaceae vascular plants TE1 and PLA2/LHD2 mutants. Moreover, the positive correlation between plastochron length and leaf size observed in ΔTEL1 mutants suggests a conserved compensatory mechanism correlating leaf growth and leaf initiation rate that would minimize overall changes in plant biomass. The RNA-binding protein encoded by PpTEL1 contains two N-terminus RNA-recognition motifs, and a third C-terminus non-canonical RRM, specific to TEL proteins. Removal of the PpTEL1 C-terminus (including this third RRM) or only 16–18 amino acids within it seriously impairs PpTEL1 function, suggesting a critical role for this third RRM. These results show a conserved function of the RNA-binding PpTEL1 protein in the regulation of shoot development, from early ancestors to vascular plants, that depends on the third TEL-specific RRM.
Resumo:
Objective: To develop bioelectrical impedance analysis (BIA) equations to predict total body water (TBW) and fat-free mass (FFM) of Sri Lankan children. Subjects/Methods: Data were collected from 5- to 15-year-old healthy children. They were randomly assigned to validation (M/F: 105/83) and cross-validation (M/F: 53/41) groups. Height, weight and BIA were measured. TBW was assessed using isotope dilution method (D2 O). Multiple regression analysis was used to develop preliminary equations and cross-validated on an independent group. Final prediction equation was constructed combining the two groups and validated by PRESS (prediction of sum of squares) statistics. Impedance index (height2/impedance; cm2/Ω), weight and sex code (male = 1; female = 0) were used as variables. Results: Independent variables of the final prediction equation for TBW were able to predict 86.3% of variance with root means-squared error (RMSE) of 2.1l. PRESS statistics was 2.1l with press residuals of 1.2l. Independent variables were able to predict 86.9% of variance of FFM with RMSE of 2.7 kg. PRESS statistics was 2.8 kg with press residuals of 1.4 kg. Bland Altman technique showed that the majority of the residuals were within mean bias±1.96 s.d. Conclusions: Results of this study provide BIA equation for the prediction of TBW and FFM in Sri Lankan children. To the best of our knowledge there are no published BIA prediction equations validated on South Asian populations. Results of this study need to be affirmed by more studies on other closely related populations by using multi-component body composition assessment.
Resumo:
Objective: Children with myelomeningocele (MMC) have an altered body composition and an atypical distribution of total body water (TBW). The aim of the present study was to determine the accuracy of current predictive equations, based on bioelectrical impedance analysis (BIA), in determining TBW when compared with measured TBW using deuterium dilution. Methods: Fourteen children with MMC were measured for whole body BIA and TBW (using deuterium dilution and the Plateau method). Total body water was predicted using equations based on the resistance and characteristic frequency from BIA measurements and heights of subjects. Results: The mean measured TBW was 15.46 ± 8.28 L and the mean predictions for TBW using equations based on the resistance and characteristic frequency from BIA measurements and heights of subjects were 18.29 ± 8.41 L, 17.72 ± 11.42 L and 12.51 ± 7.59 L, respectively. The best correlation was found using characteristic frequency. The limits of agreement between measured and predicted TBW values using Bland-Altman analysis were large. Conclusions: The present study suggests that the prediction of TBW in children with MMC can be made accurately using the equation of Cornish et al. based on BIA measurements of characteristic frequency.
Resumo:
Background: Better understanding of body composition and energy metabolism in pediatric liver disease may provide a scientific basis for improved medical therapy aimed at achieving optimal nutrition, slowing progression to end-stage liver disease (ESLD), and improving the outcome of liver transplantation. Methods: Twenty-one children less than 2 years of age with ESLD awaiting liver transplantation and 15 healthy, aged-matched controls had body compartment analysis using a four compartment model (body cell mass, fat mass, extracellular water, and extracellular solids). Subjects also had measurements of resting energy expenditure (REE) and respiratory quotient (RQ) by indirect calorimetry. Nine patients and 15 control subjects also had measurements of total energy expenditure (TEE) using doubly labelled water. Results: Mean weights and heights were similar in the two groups. Compared with control subjects, children with ESLD had higher relative mean body cell mass (33 ± 2% vs 29 ± 1% of body weight, P < 0.05), but had similar fat mass, extracellular water, and extracellular solid compartments (18% vs 20%, 41% vs 38%, and 7% vs 13% of body weight respectively). Compared with control subjects, children with ESLD had 27% higher mean REE/body weight (0.285 ± 0.013 vs 0.218. ± 0.013 mJ/kg/24h, P < 0.001), 16% higher REE/unit cell mass (P < 0.05); and lower mean RQ (P < 0.05). Mean TEE of patients was 4.70 ± 0.49 mJ/24h vs 3.19 ± 0.76 in controls, (P < 0.01). Conclusions: In children, ESLD is a hypermetabolic state adversely affecting the relationship between metabolic and non-metabolic body compartments. There is increased metabolic activity within the body cell mass with excess lipid oxidation during fasting and at rest. These findings have implications for the design of appropriate nutritional therapy.
Resumo:
Objective: To investigate measures aimed at defining the nutritional status of cystic fibrosis (CF) populations, this study compared standard anthropometric measurements and total body potassium (TBK) as indicators of malnutrition. Methods: Height, weight, and TBK measurements of 226 children with CF from Royal Children's Hospital, Brisbane, Australia, were analyzed. Z scores for height for age, weight for age, and weight for height were analyzed by means of the National Centre for Health Statistics reference. TBK was measured by means of whole body counting and compared with predicted TBK for age. Two criteria were evaluated with respect to malnutrition: (1) a z score < -2.0 and (2) a TBK for age <80% of predicted. Results: Males and females with CF had lower mean height-for-age and weight-for-age z scores than the National Centre for Health Statistics reference (P < .01), but mean weight-for-height z score was not significantly different. There were no significant gender differences. According to anthropometry, only 7.5% of this population were underweight and 7.6% were stunted. However, with TBK as an indicator of nutritional status, 29.9% of males and 22.0% of females were malnourished. Conclusion: There are large differences in the percentage of patients with CF identified as malnourished depending on whether anthropometry or body composition data are used as the nutritional indicator. At an individual level, weight-based indicators are not sensitive indicators of suboptimal nutritional status in CF, significantly underestimating the extent of malnutrition. Current recommendations in which anthropometry is used as the indicator of malnutrition in CF should be revised.
Resumo:
We investigate the evolution of electronic structure with dimensionality (d) of Ni-O-Ni connectivity in divalent nickelates, NiO (3-d), La2NiO4, Pr2NiO4 (2-d), Y2BaNiO5 (1-d) and Lu2BaNi5 (0-d), by analyzing the valence band and the Ni 2p core-level photoemission spectra in conjunction with detailed many-body calculations including full multiplet interactions. Experimental results exhibit a reduction in the intensity of correlation-induced satellite features with decreasing dimensionality. The calculations based on the cluster model, but evaluating both Ni 3d and O 2p related photoemission processes on the same footing, provide a consistent description of both valence-band and core-level spectra in terms of various interaction strengths. While the correlation-induced satellite features in NiO is dominated by poorly screened d(8) states as described in the existing literature, we find that the satellite features in the nickelates with lower dimensional Ni-O-Ni connectivity are in fact dominated by the over-screened d(10)L(2) states. It is found that the changing electronic structure with the dimensionality is primarily driven by two factors: (i) a suppression of the nonlocal contribution to screening; and (ii) a systematic decrease of the charge-transfer energy Delta driven by changes in the Madelung potential. [S0163-1829(99)09619-8].
Resumo:
The hydrodynamic modes and the velocity autocorrelation functions for a dilute sheared inelastic fluid are analyzed using an expansion in the parameter epsilon=(1-e)(1/2), where e is the coefficient of restitution. It is shown that the hydrodynamic modes for a sheared inelastic fluid are very different from those for an elastic fluid in the long-wave limit, since energy is not a conserved variable when the wavelength of perturbations is larger than the ``conduction length.'' In an inelastic fluid under shear, there are three coupled modes, the mass and the momenta in the plane of shear, which have a decay rate proportional to k(2/3) in the limit k -> 0, if the wave vector has a component along the flow direction. When the wave vector is aligned along the gradient-vorticity plane, we find that the scaling of the growth rate is similar to that for an elastic fluid. The Fourier transforms of the velocity autocorrelation functions are calculated for a steady shear flow correct to leading order in an expansion in epsilon. The time dependence of the autocorrelation function in the long-time limit is obtained by estimating the integral of the Fourier transform over wave number space. It is found that the autocorrelation functions for the velocity in the flow and gradient directions decay proportional to t(-5/2) in two dimensions and t(-15/4) in three dimensions. In the vorticity direction, the decay of the autocorrelation function is proportional to t(-3) in two dimensions and t(-7/2) in three dimensions.
Resumo:
As the conventional MOSFET's scaling is approaching the limit imposed by short channel effects, Double Gate (DG) MOS transistors are appearing as the most feasible candidate in terms of technology in sub-45nm technology nodes. As the short channel effect in DG transistor is controlled by the device geometry, undoped or lightly doped body is used to sustain the channel. There exits a disparity in threshold voltage calculation criteria of undoped-body symmetric double gate transistors which uses two definitions, one is potential based and the another is charge based definition. In this paper, a novel concept of "crossover point'' is introduced, which proves that the charge-based definition is more accurate than the potential based definition.The change in threshold voltage with body thickness variation for a fixed channel length is anomalous as predicted by potential based definition while it is monotonous for charge based definition.The threshold voltage is then extracted from drain currant versus gate voltage characteristics using linear extrapolation and "Third Derivative of Drain-Source Current'' method or simply "TD'' method. The trend of threshold voltage variation is found same in both the cases which support charge-based definition.