977 resultados para Turbulent channel flows
Resumo:
This paper presents the details of an experimental study of a cold-formed steel hollow flange channel beam known as LiteSteel Beam (LSB) subject to combined bending and shear actions. The LSB sections are produced by a patented manufacturing process involving simultaneous cold-forming and electric resistance welding. Due to the geometry of the LSB, as well as its unique residual stress characteristics and initial geometric imperfections resultant of manufacturing processes, much of the existing research for common cold-formed steel sections is not directly applicable to LSB. Experimental and numerical studies have been carried out to evaluate the behaviour and design of LSBs subject to pure bending actions and predominant shear actions. To date, however, no investigation has been conducted into the strength of LSB sections under combined bending and shear actions. Combined bending and shear is especially prevalent at the supports of continuous span and cantilever beams, where the interaction of high shear force and bending moment can reduce the capacity of a section to well below that for the same section subject only to pure shear or moment. Hence experimental studies were conducted to assess the combined bending and shear behaviour and strengths of LSBs. Eighteen tests were conducted and the results were compared with current AS/NZS 4600 and AS 4100 design rules. AS/NZS 4600 design rules were shown to grossly underestimate the combined bending and shear capacities of LSBs and hence two lower bound design equations were proposed based on experimental results. Use of these equations will significantly improve the confidence and cost-effectiveness of designing LSBs for combined bending and shear actions.
Resumo:
Neuromuscular electrical stimulation (NMES) has been consistently demonstrated to improve skeletal muscle function in neurological populations with movement disorders, such as poststroke and incomplete spinal cord injury (Vanderthommen and Duchateau, 2007). Recent research has documented that rapid, supraspinal central nervous system reorganisation/neuroplastic mechanisms are also implicated during NMES (Chipchase et al., 2011). Functional neuroimaging studies have shown NMES to activate a network of sub-cortical and cortical brain regions, including the sensorimotor (SMC) and prefrontal (PFC) cortex (Blickenstorfer et al., 2009; Han et al., 2003; Muthalib et al., 2012). A relationship between increase in SMC activation with increasing NMES current intensity up to motor threshold has been previously reported using functional MRI (Smith et al., 2003). However, since clinical neurorehabilitation programmes commonly utilise NMES current intensities above the motor threshold and up to the maximum tolerated current intensity (MTI), limited research has determined the cortical correlates of increasing NMES current intensity at or above MTI (Muthalib et al., 2012). In our previous study (Muthalib et al., 2012), we assessed contralateral PFC activation using 1-channel functional near infrared spectroscopy (fNIRS) during NMES of the elbow flexors by increasing current intensity from motor threshold to greater than MTI and showed a linear relationship between NMES current intensity and the level of PFC activation. However, the relationship between NMES current intensity and activation of the motor cortical network, including SMC and PFC, has not been clarified. Moreover, it is of scientific and clinical relevance to know how NMES affects the central nervous system, especially in comparison to voluntary (VOL) muscle activation. Therefore, the aim of this study was to utilise multi-channel time domain fNIRS to compare SMC and PFC activation between VOL and NMESevoked wrist extension movements.
Resumo:
Capacity of current and future high data rate wireless communications depend significantly on how well changes in the wireless channel are predicted and tracked. Generally, this can be estimated by transmitting known symbols. However, this increases overheads if the channel varies over time. Given today’s bandwidth demand and the increased necessity for mobile wireless devices, the contributions of this research are very significant. This study has developed a novel and efficient channel tracking algorithm that can recursively update the channel estimation for wireless broadband communications reducing overheads, therefore increasing the speed of wireless communication systems.
Resumo:
Flows of cultural heritage in textual practices are vital to sustaining Indigenous communities. Indigenous heritage, whether passed on by oral tradition or ubiquitous social media, can be seen as a “conversation between the past and the future” (Fairclough, 2012, xv). Indigenous heritage involves appropriating memories within a cultural flow to pass on a spiritual legacy. This presentation reports ethnographic research of social media practices in a small independent Aboriginal school in Southeast Queensland, Australia that is resided over by the Yugambeh elders and an Aboriginal principal. The purpose was to rupture existing notions of white literacies in schools, and to deterritorialize the uses of digital media by dominant cultures in the public sphere. Examples of learning experiences included the following: i. Integrating Indigenous language and knowledge into media text production; ii. Using conversations with Indigenous elders and material artifacts as an entry point for storytelling; iii. Dadirri – spiritual listening in the yarning circle to develop storytelling (Ungunmerr-Baumann, 2002); and iv. Writing and publicly sharing oral histories through digital scrapbooking shared via social media. The program aligned with the Australian National Curriculum English (ACARA, 2012), which mandates the teaching of multimodal text creation. Data sources included a class set of digital scrapbooks collaboratively created in a multi-age primary classroom. The digital scrapbooks combined digitally encoded words, images of material artifacts, and digital music files. A key feature of the writing and digital design task was to retell and digitally display and archive a cultural narrative of significance to the Indigenous Australian community and its memories and material traces of the past for the future. Data analysis of the students’ digital stories involved the application of key themes of negotiated, material, and digitally mediated forms of heritage practice. It drew on Australian Indigenous research by Keddie et al. (2013) to guard against the homogenizing of culture that can arise from a focus on a static view of culture. The interpretation of findings located Indigenous appropriation of social media within broader racialized politics that enables Indigenous literacy to be understood as a dynamic, negotiated, and transgenerational flows of practice. The findings demonstrate that Indigenous children’s use of media production reflects “shifting and negotiated identities” in response to changing media environments that can function to sustain Indigenous cultural heritages (Appadurai, 1696, xv). It demonstrated how the children’s experiences of culture are layered over time, as successive generations inherit, interweave, and hear others’ cultural stories or maps. It also demonstrated how the children’s production of narratives through multimedia can provide a platform for the flow and reconstruction of performative collective memories and “lived traces of a common past” (Giaccardi, 2012). It disrupts notions of cultural reductionism and racial incommensurability that fix and homogenize Indigenous practices within and against a dominant White norm. Recommendations are provided for an approach to appropriating social media in schools that explicitly attends to the dynamic nature of Indigenous practices, negotiated through intercultural constructions and flows, and opening space for a critical anti-racist approach to multimodal text production.
Resumo:
Spectrum sensing of multiple primary user channels is a crucial function in cognitive radio networks. In this paper we propose an optimal, sensing resource allocation algorithm for multi-channel cooperative spectrum sensing. The channel target is implemented as an objective and constraint to ensure a pre-determined number of empty channels are detected for secondary user network operations. Based on primary user traffic parameters, we calculate the minimum number of primary user channels that must be sensed to satisfy the channel target. We implement a hybrid sensing structure by grouping secondary user nodes into clusters and assign each cluster to sense a different primary user channels. We then solve the resource allocation problem to find the optimal sensing configuration and node allocation to minimise sensing duration. Simulation results show that the proposed algorithm requires the shortest sensing duration to achieve the channel target compared to existing studies that require long sensing and cannot guarantee the target.
Resumo:
New technologies, in particular the Internet, have transformed journalistic practices in many ways around the world. While a number of studies have investigated how established journalists are dealing with and using new technologies in a number of countries, very little attention has been paid to how student journalists view and use the Internet as a source of news. This study examined the ways in which second and third-year journalism and arts students at the University of Queensland (Australia) get their news, how they use the Internet as a news channel, as well as their perceptions and use of other new technologies. The authors draw on the theoretical frameworks of uses and gratifications, as well as the media richness theory to explore the primary reasons why students use and perceive the Internet as a news channel.
Resumo:
The study of international news flows has been a dominant topic of international communication research during the past 50 years. This paper critically reviews past approaches to the analysis of news flows and identifies the main strands of research in this field. In line with some previous critiques of the field, we argue that past research has for too long been influenced by dichotomous debates that failed to take account of the complexities of international news decisions. A new direction is needed in order for news flow research to provide better answers to the recurring questions. This new direction is not a break from past approaches but rather an integration of all different approaches, which would provide researchers with a more holistic framework for analyzing international news flows. This new approach calls for a combination of political, economic, geographic, historical, social and cultural factors, including perspectives from other disciplines, such as anthropology and linguistics.
Resumo:
We describe the X-series impulse facilities at The University of Queensland and show that they can produce useful high speed flows of relevance to the study of high temperature radiating flow flields characteristic of atmospheric entry. Two modes of operation are discussed: (a) the expansion tube mode which is useful for subscale aerodynamic testing of vehicles and (b) the non-reflected shock tube mode which can be used to emulate the nonequilibrium radiating region immediately following the bow shock of a flight vehicle.
Resumo:
LiteSteel beam (LSB) is a new cold-formed steel hollow flange channel section produced using a patented manufacturing process involving simultaneous cold-forming and dual electric resistance welding. The LSBs were commonly used as floor joists and bearers with web openings in residential, industrial and commercial buildings. Due to the unique geometry of LSBs, as well as its unique residual stress characteristics and initial geometric imperfections resultant of manufacturing processes, much of the existing research for common cold-formed steel sections is not directly applicable to LSBs. Many research studies have been carried out to evaluate the behaviour and design of LSBs subject to pure bending actions, predominant shear and combined actions. However, to date, no investigation has been conducted into the web crippling behaviour and strength of LSB sections. Hence detailed experimental studies were conducted to investigate the web crippling behaviour and strengths of LSBs under EOF (End One Flange) and IOF (Interior One Flange) load cases. A total of 26 web crippling tests was conducted and the results were compared with current AS/NZS 4600 design rules. This comparison showed that AS/NZS 4600 (SA, 2005) design rules are very conservative for LSB sections under EOF and IOF load cases. Suitable design equations have been proposed to determine the web crippling capacity of LSBs based on experimental results. This paper presents the details of this experimental study on the web crippling behaviour and strengths of LiteSteel beams under EOF and IOF load cases.
Resumo:
Cold-formed steel members are increasingly used as primary structural elements in buildings due to the availability of thin and high strength steels and advanced cold-forming technologies. Cold-formed lipped channel beams (LCB) are commonly used as flexural members such as floor joists and bearers. Many research studies have been carried out to evaluate the behaviour and design of LCBs subject to pure bending actions. However, limited research has been undertaken on the shear behaviour and strength of LCBs. Hence a numerical study was undertaken to investigate the shear behaviour and strength of LCBs. Finite element models of simply supported LCBs with aspect ratios of 1.0 and 1.5 were considered under a mid-span load. They were then validated by comparing their results with test results and used in a detailed parametric study based on the validated finite element models. Numerical studies were conducted to investigate the shear buckling and post-buckling behaviour of LCBs. Experimental and numerical results showed that the current design rules in cold-formed steel structures design codes are very conservative for the shear design of LCBs. Improved design equations were therefore proposed for the shear strength of LCBs. This paper presents the details of this numerical study of LCBs and the results.
Resumo:
This paper presents the details of experimental studies on the effect of real support conditions on the shear strength of LiteSteel beams (LSB). The LSB has a unique shape of a channel beam with two rectangular hollow flanges, made using a unique manufacturing process. In some applications in the building industry LSBs are used with only one web side plate (WSP) at their supports and are not used with full height web side plates (WSP) at their supports. Past research studies showed that theses real support connections did not provide simply supported conditions. Many studies have been carried out to evaluate the behaviour and design of LSBs with simply supported conditions subject to pure bending and predominant shear actions. To date, however, no investigation has been conducted into the effect of real support conditions on the shear strength of LSBs. Hence detailed experimental studies were undertaken to investigate the shear behaviour and strength of LSBs with real support conditions. A total of 28 experimental tests were conducted as part of the studies. Simply supported test specimens of LSBs with aspect ratios of 1.0 and 1.5 were loaded at mid-span until failure. It was found that the effect of using one WSP on the shear behaviour of LSB is significant and there is about 25% shear capacity reduction due to the lateral movement of the bottom flange at the supports. Shear capacity of LSB was also found to decrease when full height WSPs were not used. Suitable support connections were developed to improve the shear capacity of LSBs based on test results.
Resumo:
This paper presents the details of an experimental study of a cold-formed steel hollow flange channel beam known as LiteSteel Beam (LSB) subject to web crippling actions (ETF and ITF). Due to the geometry of the LSB, as well as its unique residual stress characteristics and initial geometric imperfections resultant of manufacturing processes, much of the existing research for common cold-formed steel sections is not directly applicable to LSB. Experimental and numerical studies have been carried out to evaluate the behaviour and design of LSBs subject to pure bending actions, predominant shear actions and combined actions. To date, however, no investigation has been conducted into the web crippling behaviour and strength of LSB sections under ETF and ITF load conditions. Hence experimental studies were conducted to assess the web crippling behaviour and strengths of LSBs. Twenty eight web crippling tests were conducted and the results were compared with the current AS/NZS 4600[1] and AISI S100 [2]design equations. Comparison of the ultimate web crippling capacities from tests showed that AS/NZS 4600[1] and AISI S100 [2] design equations are unconservative for LSB sections under ETF and ITF load cases. Hence new equations were proposed to determine the web crippling capacities of LSBs. Suitable design rules were also developed under the DSM format.
Resumo:
LiteSteel beam (LSB) is a cold-formed steel hollow flange channel section produced using a patented manufacturing process involving simultaneous cold-forming and dual electric resistance welding. It is commonly used as floor joists and bearers in residential, industrial and commercial buildings. Design of the LSB is governed by the Australian cold-formed steel structures code, AS/NZS 4600. Due to the geometry of the LSB, as well as its unique residual stress characteristics and initial geometric imperfections resultant of manufacturing processes, currently available design equations for common cold-formed sections are not directly applicable to the LSB. Many research studies have been carried out to evaluate the behaviour and design of LSBs subject to pure bending actions and predominant shear actions. To date, however, no investigation has been conducted into the strength of LSB sections under combined bending and shear actions. Hence experimental and numerical studies were conducted to assess the combined bending and shear behaviour of LSBs. Finite element models of LSBs were developed to simulate their combined bending and shear behaviour and strength of LSBs. They were then validated by comparing the results with available experimental test results and used in a detailed parametric study. The results from experimental and finite element analyses were compared with current AS/NZS 4600 and AS 4100 design rules. Both experimental and numerical studies show that the AS/NZS 4600 design rule based on circular interaction equation is conservative in predicting the combined bending and shear capacities of LSBs. This paper presents the details of the numerical studies of LSBs and the results. In response to the inadequacies of current approaches to designing LSBs for combined bending and shear, two lower bound design equations are proposed in this paper.
Resumo:
This research has analysed both reciprocity and feedback mechanisms in multi-antenna wireless systems. It has presented the basis of an effective CSI feedback mechanism that efficiently provides the transmitter with the minimum information to allow the accurate knowledge of a rapidly changing channel. The simulations have been conducted using MATLAB to measure the improvement when the channel is estimated at the receiver in a 2 X 2 multi-antenna system and compared to the case of perfect channel knowledge at the receiver.