961 resultados para Triassic-Miocene successions
Resumo:
Recovery from the end-Permian mass extinction is frequently described as delayed, with complex ecological communities typically not found in the fossil record until the Middle Triassic epoch. However, the taxonomic diversity of a number of marine groups, ranging from ammonoids to benthic foraminifera, peaked rapidly in the Early Triassic. These variations in biodiversity occur amidst pronounced excursions in the carbon isotope record, which are compatible with episodes of massive CO2 outgassing from the Siberian Large Igneous Province. Here we present a high-resolution Early Triassic temperature record based on the oxygen isotope composition of pristine apatite from fossil conodonts. Our reconstruction shows that the beginning of the Smithian substage of the Early Triassic was marked by a cooler climate, followed by an interval of warmth lasting until the Spathian substage boundary. Cooler conditions resumed in the Spathian. We find the greatest increases in taxonomic diversity during the cooler phases of the early Smithian and early Spathian. In contrast, a period of extreme warmth in the middle and late Smithian was associated with floral ecological change and high faunal taxonomic turnover in the ocean. We suggest that climate upheaval and carbon-cycle perturbations due to volcanic outgassing were important drivers of Early Triassic biotic recovery.
Resumo:
Cores from Leg 122, Sites 759, 760, 761, and 764, were sampled at intervals of one sample per 1.5-m section in the Upper Triassic sequences. Spores, pollen, acritarchs, freshwater algae, and dinoflagellate cysts were studied to establish a palynostratigraphic framework for the Late Triassic. The palynological sequence is interpreted in terms of Australian spore-pollen zones: the Carman Samaropollenites speciosus Zone, the Norian Minutosaccus crenulatus Zone, and the Rhaetian Ashmoripollis reducta Zone. The Samaropollenites speciosus Zone-Minutosaccus crenulatus Zone boundary is marked by the change of pollen abundance and has a gradual character. Therefore, a transitional uppermost Carnian to Norian Samaropollenites speciosus/Minutosaccus crenulatus Zone is used. Age-determining dinoflagellate cysts are present in the Norian and Rhaetian sediments.
Resumo:
The distribution of calcareous nannofossils is documented for the middle Eocene through lowermost Miocene cores from Ocean Drilling Program Holes 699A and 703A in the subantarctic South Atlantic. The detailed nannofossil biostratigraphies established, in combination with published magnetostratigraphic data, have provided a fairly detailed age model for each hole. This study suggests that the middle Eocene through lowermost Miocene section from Hole 699A is virtually complete. A major hiatus has been identified in Hole 703A in the earliest Oligocene, coincident with n abrupt cooling in the Southern Ocean. Comparison of the nannofossil datum ages calibrated with magnetostratigraphy in the two holes with those from mid and southern high latitudes demonstrates synchroneity or diachroneity for the following nannofossil datums: (1) The last occurrence (LO) of Reticulofenestra bisecta is a consistent and reliable biostratigraphic marker for the Oligocene/Miocene boundary from mid- to high latitudes but not in extreme high latitudes; (2) similarly, the LO of Chiasmolithus altus has a consistent age of about 26.8 Ma in the Southern Ocean except in the extreme high latitudes where the datum appears to be substantially younger; (3) the LO of Reticulofenestra umbilica is about 32.9 Ma in the Southern Ocean; (4) the LO of Isthmolithus recurvus is reliable and consistent from mid through high latitudes and correlates with the lower part of Subchron C12R (~34.4 Ma); (5) the LO of Reticulofenestra oamaruensis has a consistent age of 36.0 Ma at all four Southern Ocean sites that have yielded a lower Oligocene magnetostratigraphy; (6) the first occurrence (FO) of R. oamaruensis is at 38.4 Ma in the Southern Ocean; and (7) the FO of I. recurvus shows some age variations from mid to high latitudes and the age range is 38.5-39.0 Ma at the five Southern Ocean sites.
Resumo:
The disappearance at ~10 Ma of the deep dwelling planktonic foraminifer Globoquadrina dehiscens from the western Pacific including the South China Sea was about 3 Myr earlier than its final extinction elsewhere. Accompanying this event at ~10 Ma was a series of faunal turnover characterized by increase in mixed layer, warm-water species and decrease to a minimum in deepwater species. Paleobiological and isotopic evidence indicates sea surface warming and a deepened local thermocline that we interpret as related to the development of an early western Pacific warm pool. The stepwise decline of G. dehiscens and other deep dwelling species from the NW and SW Pacific suggests more intensive warm water pileup than equatorial localities where surface bypass flow through the narrowing Indonesia seaway appears to remain efficient during the late Miocene. Planktonic delta18O values from the South China Sea consistently lighter than the tropical western Pacific during the Miocene also suggest, similar to today, more variable hydrologic conditions along the periphery than in the core of the warm pool. Stronger hydrologic variability affected mainly by monsoons and increased thermal gradient along the western margin of the late Miocene warm pool may have contributed to the decline of deep dwelling planktonic species including the early extinction of G. dehiscens from the South China Sea region. The late Miocene warm pool became influential and paleobiologically detectable from ~10 Ma, but the modern warm pool did not appear until about 4 Ma, in the middle Pliocene.
Resumo:
During Leg 127, the formation microscanner (FMS) logging tool was used as part of an Ocean Drilling Program (ODP) logging program for only the second time in the history of the program. Resistivity images, also known as FMS logs, were obtained at Sites 794 and 797 that covered nearly the complete Yamato Basin sedimentary sequence to a depth below 500 mbsf. The FMS images from these two sites at the northeastern and southwestern corners of the Yamato Basin thus were amenable to comparison. A strong visual correlation was noticed between the FMS logs taken in Holes 794B and 797C in an upper Miocene interval (350-384 mbsf), although the two sites are approximately 360 km apart. In this interval, the FMS logs showed a series of more resistive thin beds (10-200 cm) alternating with relatively lower resistivity layers: a pattern that was manifested by alternating dark (low resistivity) and light (high resistivity) banding in the FMS images. We attribute this layering to interbedding of chert and porcellanite layers, a common lithologic sequence throughout Japan (Tada and Iijima, 1983, doi:10.1306/212F82E7-2B24-11D7-8648000102C1865D). Spatial frequency analysis of this interval of dominant dark-light banding showed spatial cycles of period of 1.1 to 1.3 and 0.6 m. This pronounced layering and the correlation between the two sites terminate at 384 mbsf, coincident with the opal-CT to quartz transition at Site 794. We think the correlation in the FMS logs might well extend earlier in the middle Miocene, but the opal-CT to quartz transition obscures this layering below 384 mbsf. Although 34 m is only a small part of the core recovered at these two sites, it is significant because it represents an area of extremely poor core recovery and an interval for which a near-depositional hiatus was postulated for Site 797, but not for Site 794.
Resumo:
Early to middle Miocene radiolarian assemblages were examined at three sites (747, 748, and 751) that were cored during Ocean Drilling Program Leg 120 south of the present polar frontal zone on the Kerguelen Plateau (Indian sector of the Southern Ocean). The radiolarian biostratigraphic study relies on a radiolarian zonation recently developed on Leg 113 materials in the Atlantic sector of the Southern Ocean, which is correlated with the geomagnetic time scale. New radiolarian biostratigraphic data also considering the established geomagnetic polarity record were used to improve and emend the age calibration of some lower Miocene radiolarian zones and a redefined middle Miocene radiolarian zonation is proposed. Based on these results, a revised age assignment of the lower Miocene sections drilled at Leg 113 Sites 689 and 690 is proposed.
Resumo:
The Owen Ridge south of Oman represents oceanic crust that was uplifted by compressional tectonic forces in the early Miocene. Build-out of the Indus Fan led to deposition of a thick sequence of turbidites over the site of the Ridge during the late Oligocene and early Miocene. Early Miocene uplift of the Ridge led to a pelagic cap of nannofossil chalks. Two short sequences of turbidites from the pre- and syn-uplift phases were chosen for detailed grain size analysis. The upper Oligocene section at Site 731 is composed of thin (centimeter-decimeter scale) graded mud turbidites separated by relatively thick (decimeter-meter scale) intervals of homogeneous, non-bioturbated clayey siltstones. These finer intervals are unusually silt-rich (about 60%) for ungraded material and were probably deposited as undifferentiated muds from a series of turbidity current tails. By contrast, the lower Miocene section at Site 722 is comprised of a sequence of interbedded turbidites and hemipelagic carbonates. Sharp-based silt turbidites are overlain by burrow-mottled marly nannofossil chalks. The Oligocene sequence may have accumulated in an overbank setting on the middle fan - the local topographic position favoring frequent deposition from turbidity current tails and occasional deposition from the body of a turbidity flow. Uplift of the Ridge in the early Miocene led to pelagic carbonate deposition interrupted only by turbidity currents capable of overcoming a topographic barrier. Further uplift eventually led to entirely pelagic carbonate deposition.
Resumo:
We present a detailed palaeoclimate analysis of the Middle Miocene (uppermost Badenian-lowermost Sarmatian) Schrotzburg locality in S Germany, based on the fossil macro- and micro-flora, using four different methods for the estimation of palaeoclimate parameters: the coexistence approach (CA), leaf margin analysis (LMA), the Climate-Leaf Analysis Multivariate Program (CLAMP), as well as a recently developed multivariate leaf physiognomic approach based on an European calibration dataset (ELPA). Considering results of all methods used, the following palaeoclimate estimates seem to be most likely: mean annual temperature ~15-16°C (MAT), coldest month mean temperature ~7°C (CMMT), warmest month mean temperature between 25 and 26°C, and mean annual precipiation ~1,300 mm, although CMMT values may have been colder as indicated by the disappearance of the crocodile Diplocynodon and the temperature thresholds derived from modern alligators. For most palaeoclimatic parameters, estimates derived by CLAMP significantly differ from those derived by most other methods. With respect to the consistency of the results obtained by CA, LMA and ELPA, it is suggested that for the Schrotzburg locality CLAMP is probably less reliable than most other methods. A possible explanation may be attributed to the correlation between leaf physiognomy and climate as represented by the CLAMP calibration data set which is largely based on extant floras from N America and E Asia and which may be not suitable for application to the European Neogene. All physiognomic methods used here were affected by taphonomic biasses. Especially the number of taxa had a great influence on the reliability of the palaeoclimate estimates. Both multivariate leaf physiognomic approaches are less influenced by such biasses than the univariate LMA. In combination with previously published results from the European and Asian Neogene, our data suggest that during the Neogene in Eurasia CLAMP may produce temperature estimates, which are systematically too cold as compared to other evidence. This pattern, however, has to be further investigated using additional palaeofloras.
Resumo:
A morphometric analysis was performed for the late Middle Miocene bivalve species lineage of Polititapes tricuspis (Eichwald, 1829) (Veneridae: Tapetini). Specimens from various localities grouped into two stratigraphically successive biozones, i.e. the upper Ervilia Zone and the Sarmatimactra Zone, were investigated using a multi-method approach. A Generalized Procrustes Analysis was computed for fifteen landmarks, covering characteristics of the hinge, muscle scars, and pallial line. The shell outline was separately quantified by applying the Fast Fourier Transform, which redraws the outline by fitting in a combination of trigonometric curves. Shell size was calculated as centroid size from the landmark configuration. Shell thickness, as not covered by either analysis, was additionally measured at the centroid. The analyses showed significant phenotypic differentiation between specimens from the two biozones. The bivalves become distinctly larger and thicker over geological time and develop circular shells with stronger cardinal teeth and a deeper pallial sinus. Data on the paleoenvironmental changes in the late Middle Miocene Central Paratethys Sea suggest the phenotypic shifts to be functional adaptations. The typical habitats for Polititapes changed to extensive, very shallow shores exposed to high wave action and tidal activity. Caused by the growing need for higher mechanical stability, the bivalves produced larger and thicker shells with stronger cardinal teeth. The latter are additionally shifted towards the hinge center to compensate for the lacking lateral teeth and improve stability. The deepening pallial sinus is related to a deeper burrowing habit, which is considered to impede being washed out in the new high-energy settings.
Resumo:
Deepwater circulation plays an important role in climate modulation through its redistribution of heat and salt and its control of atmospheric CO2. Oppo and Fairbanks (1987, doi:10.1016/0012-821X(87)90183-X) showed that the Southern Ocean is an excellent monitor of deepwater circulation changes for two reasons: (1) the Southern Ocean is a mixing reservoir for incoming North Atlantic Deep Water and recirculated water from the Pacific and Indian oceans; and (2) the nutrient/delta13C tracers of deepwater are not significantly changed by surficial processes within the Southern Ocean. We can extend these principles to the late Miocene because tectonic changes in the Oligocene and early and middle Miocene developed near-modern basinal configurations. However, on these time scales, changes in the oceanic carbon reservoir and mean ocean nutrient levels also affect the delta13C differences between ocean basins. From 9.8 to 9.3 Ma, Southern Ocean delta13C values oscillated between high North Atlantic values and low Pacific values. The Southern Ocean recorded delta13C values similar to Pacific values from 9.2 to 8.9 Ma, reflecting a low contribution of Northern Component Water (NCW). The delta13C differences between the NCW and Pacific Outflow Water (POW) end-members were low from 8.9 to 8.0 Ma, making it difficult to discern circulation patterns. NCW production may have completely shutdown at 8.6 Ma, allowing Southern Component Water (SCW) to fill the North Atlantic and causing the delta13C values in the North Atlantic, Pacific, and Southern oceans to converge. Deepwater delta13C patterns resembling the modern distributions evolved by 7.0 Ma: delta13C values were near 1.0 per mil in the North Atlantic; 0.0 per mil in the Pacific; and 0.5 per mil in the Southern Ocean. Development of near-modern delta13C distributions by 7.0 Ma resulted not only from an increase in NCW flux but also from an increase in deepwater nutrient levels. Both of these processes increased the delta13C difference between the North Atlantic and Pacific oceans. Deepwater circulation patterns similar to today's operated as early as 9.8 Ma, but were masked by the lower nutrient/delta13C differences. During the late Miocene, 'interglacial' intervals prevailed during intervals of NCW production, while 'glacial' intervals occurred during low NCW production.
Resumo:
Diatoms occur sporadically in lower Miocene to Holocene sediments recovered at ODP Site 645 and in upper Pliocene to Holocene sediments at ODP Site 646. The diatom assemblage at Site 645 contains rare stratigraphic indicators. Fragmentation of frustules and the occurrence of species characteristic of high-latitude shelf, upper-slope environments suggest current transportation from the shelf. The diatom abundance and preservation at Site 646 probably reflect climatic changes and are also affected by dissolution, but it is not possible to detect the dominant factor. Therefore, the stratigraphic ranges of the primary and secondary biostratigraphic indicators are often unreliable.
Resumo:
During Leg 177 of the Ocean Drilling Program (ODP), a well-preserved middle Eocene to lower Miocene sediment record was recovered at Site 1090 on the Agulhas Ridge in the Atlantic sector of the Southern Ocean. This new sediment record shows evidence of a hitherto unknown late Eocene opal pulse. Lithological variations, compositional data, mass-accumulation rates of biogenic and lithogenic sediment constituents, grain-size distributions, geochemistry, and clay mineralogy are used to gain insights into mid-Cenozoic environmental changes and to explore the circumstances of the late Eocene opal pulse in terms of reorganizations in ocean circulation. The base of the section is composed of middle Eocene nannofossil oozes mixed with red clays enriched in authigenic clinoptilolite and smectite, deposited at low sedimentation rates (LE 2 cm/ka). It indicates reduced terrigenous sediment input and moderate biological productivity during this preglacial warm climatic stage. The basal strata are overlain by an extended succession (100 m, 4 cm/ka) of biosiliceous oozes and muds, comprising the upper middle Eocene, the entire late Eocene, and the lowermost early Oligocene. The opal pulse occurred between 37.5 and 33.5 Ma and documents the development of upwelling cells along topographic highs, and the utilization of a marine nutrient- and silica reservoir established during the pre-late Eocene through enhanced submarine hydrothermal activity and the introduction of terrigenous solutions from chemical weathering on adjacent continents. This palaeoceanographic overturn probably was initiated through the onset of increased meridional ocean circulation, caused by the diversion of the Indian equatorial current to the south. The opal pulse was accompanied by increased influxes of terrigenous detritus from southern African sources (illite), mediated by enhanced ocean particle advection in response to modified ocean circulation. The opal pulse ended because of frontal shifts to the south around the Eocene/Oligocene boundary, possibly in response to the opening of the Drake Passage and the incipient establishment of the Antarctic Circumpolar Current. Condensed sediments and a hiatus within the early Oligocene part of the section possibly point to an invigoration of the deep-reaching Antarctic Circumpolar Current. The mid-Oligocene to lower Miocene section on long time scale exhibits less pronounced lithological variations than the older section and points to relatively stable palaeoceanographic conditions after the dramatic changes in the late Eocene to early Oligocene.