995 resultados para Transport Pathways
Resumo:
Stable isotope and Ar-40/Ar-39 measurements,were made on samples associated with a major tectonic discontinuity in the Helvetic Alps, the basal thrust of the Diablerets nappe (external zone of the Alpine Belt) in order to determine both the importance of fluids in this thrust zone and the timing of thrusting. A systematic decrease in the delta(18)O values (up to 6 parts per thousand) of calcite, quartz, and white mica exists within a 10- to 70-m-wide zone over a distance of 37 km along the thrust, and they become more pronounced toward the root of the nappe. A similar decrease in the delta(13)C values of calcite is observed only in the deepest sections (up to 3 parts per thousand). The delta D-SMOW (SMOW = standard mean ocean water) values of white mica are -54 parts per thousand +/- 8 parts per thousand (n = 22) and are independent of the distance from the thrust. These variations are interpreted to reflect syntectonic solution reprecipitation during fluid passage along the thrust. The calculated delta(18)O and delta D values (versus SMOW) for the fluid in equilibrium with the analyzed minerals is 12 parts per thousand to 16 parts per thousand and -30 parts per thousand to +5 parts per thousand, respectively, for assumed temperatures of 250 to 450 degrees C. The isotopic and structural data are consistent with fluids derived from the deep-seated roots of the Helvetic nappes where large volumes of Mesozoic sediments were metamorphosed to the amphibolite facies, It is suggested that connate and metamorphic waters, overpressured by rapid tectonic burial in a subductive system escaped by upward infiltration along moderately dipping pathways until they reached the main shear zone at the base of the moving pile, where they were channeled toward the surface, This model also explains the mechanism by which large amounts of fluid were removed from the Mesozoic sediments during Alpine metamorphism. White mica Ar-49/Ar-39 ages vary from 27 Ma far from the Diablerets thrust to 15 Ma along the thrust. An older component is observed in micas far from the thrust, interpreted as a detrital signature, and indicates that regional metamorphic temperatures were less than about 350 degrees C. The;plateau and near plateau ages nearest the thrust are consistent with either neocrystallization of white mica or argon loss by recrystallization during thrusting, which may have been enhanced in the zones of highest fluid flow. The 15 Ma Ar-40/Ar-39 age plateau measured on white mica sampled exactly on the thrust surface dates the end of both fluid flow and tectonic transport.
Resumo:
Plant membrane compartments and trafficking pathways are highly complex, and are often distinct from those of animals and fungi. Progress has been made in defining trafficking in plants using transient expression systems. However, many processes require a precise understanding of plant membrane trafficking in a developmental context, and in diverse, specialized cell types. These include defense responses to pathogens, regulation of transporter accumulation in plant nutrition or polar auxin transport in development. In all of these cases a central role is played by the endosomal membrane system, which, however, is the most divergent and ill-defined aspect of plant cell compartmentation. We have designed a new vector series, and have generated a large number of stably transformed plants expressing membrane protein fusions to spectrally distinct, fluorescent tags. We selected lines with distinct subcellular localization patterns, and stable, non-toxic expression. We demonstrate the power of this multicolor 'Wave' marker set for rapid, combinatorial analysis of plant cell membrane compartments, both in live-imaging and immunoelectron microscopy. Among other findings, our systematic co-localization analysis revealed that a class of plant Rab1-homologs has a much more extended localization than was previously assumed, and also localizes to trans-Golgi/endosomal compartments. Constructs that can be transformed into any genetic background or species, as well as seeds from transgenic Arabidopsis plants, will be freely available, and will promote rapid progress in diverse areas of plant cell biology.
Resumo:
Liver metabolism is markedly sex-dimorphic; accordingly, the prevalence of liver diseases is different between sexes. The superfamily of nuclear receptors (NRs) governs the proper expression of key liver metabolism genes by sensing lipid-soluble hormones and dietary lipids. When the expression of those genes is deregulated, disease development is favored. However, we lack a comprehensive picture of the differences between NR actions in males and females. Here, we reviewed explorative studies that assessed NR functions in both sexes, and we propose a first map of sex-dimorphic NR expression in the liver. Our analysis suggested that NRs in the female liver exhibited cross-talk with more liver-protective potential than NRs in male liver. This study provides empirical support to the hypothesis that women are more resilient to some liver diseases than men, based on a more compensative NR network. This article is part of a Special Issue entitled: Translating nuclear receptors from health to disease.
Resumo:
Blood pressure is a heritable trait influenced by several biological pathways and responsive to environmental stimuli. Over one billion people worldwide have hypertension (≥140 mm Hg systolic blood pressure or ≥90 mm Hg diastolic blood pressure). Even small increments in blood pressure are associated with an increased risk of cardiovascular events. This genome-wide association study of systolic and diastolic blood pressure, which used a multi-stage design in 200,000 individuals of European descent, identified sixteen novel loci: six of these loci contain genes previously known or suspected to regulate blood pressure (GUCY1A3-GUCY1B3, NPR3-C5orf23, ADM, FURIN-FES, GOSR2, GNAS-EDN3); the other ten provide new clues to blood pressure physiology. A genetic risk score based on 29 genome-wide significant variants was associated with hypertension, left ventricular wall thickness, stroke and coronary artery disease, but not kidney disease or kidney function. We also observed associations with blood pressure in East Asian, South Asian and African ancestry individuals. Our findings provide new insights into the genetics and biology of blood pressure, and suggest potential novel therapeutic pathways for cardiovascular disease prevention.
Resumo:
Both the central and the peripheral nervous systems are prone to multiple age-dependent neurological deficits, often attributed to still unknown alterations in the function of myelinating glia. To uncover the biological processes affected in glial cells by aging, we analyzed gene expression of the Schwann cell-rich mouse sciatic nerve at 17 time points throughout life, from day of birth until senescence. By combining these data with the gene expression data of myelin mouse mutants carrying deletions of either Pmp22, SCAP, or Lpin1, we found that the majority of age-related transcripts were also affected in myelin mutants (54.4%) and were regulated during PNS development (59.5%), indicating a high level of overlap in implicated molecular pathways. The expression profiles in aging copied the direction of transcriptional changes observed in neuropathy models; however, they had the opposite direction when compared with PNS development. The most significantly altered biological processes in aging involved the inflammatory/immune response and lipid metabolism. Interestingly, both these pathways were comparably changed in the aging optic nerve, suggesting that similar biological processes are affected in aging of glia-rich parts of the central and peripheral nervous systems. Our comprehensive comparison of gene expression in three distinct biological conditions including development, aging, and myelin disease thus revealed a previously unanticipated relationship among themselves and identified lipid metabolism and inflammatory/immune response pathways as potential therapeutical targets to prevent or delay so far incurable age-related and inherited forms of neuropathies.
Resumo:
During synaptic activity, the clearance of neuronally released glutamate leads to an intracellular sodium concentration increase in astrocytes that is associated with significant metabolic cost. The proximity of mitochondria at glutamate uptake sites in astrocytes raises the question of the ability of mitochondria to respond to these energy demands. We used dynamic fluorescence imaging to investigate the impact of glutamatergic transmission on mitochondria in intact astrocytes. Neuronal release of glutamate induced an intracellular acidification in astrocytes, via glutamate transporters, that spread over the mitochondrial matrix. The glutamate-induced mitochondrial matrix acidification exceeded cytosolic acidification and abrogated cytosol-to-mitochondrial matrix pH gradient. By decoupling glutamate uptake from cellular acidification, we found that glutamate induced a pH-mediated decrease in mitochondrial metabolism that surpasses the Ca(2+)-mediated stimulatory effects. These findings suggest a model in which excitatory neurotransmission dynamically regulates astrocyte energy metabolism by limiting the contribution of mitochondria to the metabolic response, thereby increasing the local oxygen availability and preventing excessive mitochondrial reactive oxygen species production.
Resumo:
The retinal pigment epithelium (RPE) is constantly exposed to external injuries which lead to degeneration, dysfunction or loss of RPE cells. The balance between RPE cells death and proliferation may be responsible for several diseases of the underlying retina, including age-related macular degeneration (AMD) and proliferative vitreoretinopathy (PVR). Signaling pathways able to control cells proliferation or death usually involve the MAPK (mitogen-activated protein kinases) pathways, which modulate the activity of transcription factors by phosphorylation. UV exposure induces DNA breakdown and causes cellular damage through the production of reactive oxygen species (ROS) leading to programmed cell death. In this study, human retinal pigment epithelial cells ARPE19 were exposed to 100 J/m(2) of UV-C and MAPK pathways were studied. We first showed the expression of the three major MAPK pathways. Then we showed that activator protein-1 (AP-1) was activated through phosphorylation of cJun and cFos, induced by JNK and p38, respectively. Specific inhibitors of both kinases decreased their respective activities and phosphorylation of their nuclear targets (cJun and cFos) and reduced UV-induced cell death. The use of specific kinases inhibitors may provide excellent tools to prevent RPE apoptosis specifically in RPE diseases involving ROS and other stress-related compounds such as in AMD.
Resumo:
We previously established that exogenous adenosine (ADO) induces transient arrhythmias in the developing heart via the adenosine A1 receptor (A1AR) and downstream activation of NADPH oxidase/ERK and PLC/PKC pathways. Here, we investigated the mechanisms by which accumulation of endogenous ADO and its derived compound inosine (INO) in the interstitial compartment induce rhythm and conduction troubles. The validated model of the spontaneously beating heart obtained from 4-day-old chick embryos was used. Quantitative RT-PCR showed that enzymes involved in ADO and INO metabolism (CD39, CD73 and eADA) as well as equilibrative (ENT1, -3, -4) and concentrative (CNT3) nucleoside transporters were differentially expressed in atria, ventricle and outflow tract. Inactivation of ENTs by dipyridamole, 1) increased myocardial ADO level, 2) provoked atrial arrhythmias and atrio-ventricular blocks (AVB) in 70% of the hearts, 3) prolonged P wave and QT interval without altering contractility, and 4) increased ERK2 phosphorylation. Blockade of CD73-mediated phosphohydrolysis of AMP to ADO, MEK/ERK pathway inhibition or A1AR inhibition prevented these arrhythmias. Exposure to exogenous INO also caused atrial ectopy associated with AVB and ERK2 phosphorylation which were prevented by A1AR or A2AAR antagonists exclusively or by MEK/ERK inhibitor. Inhibition of ADA-mediated conversion of ADO to INO increased myocardial ADO and decreased INO as expected, but slightly augmented heart rate variability without provoking AVB. Thus, during cardiogenesis, disturbances of nucleosides metabolism and transport, can lead to interstitial accumulation of ADO and INO and provoke arrhythmias in an autocrine/paracrine manner through A1AR and A2AAR stimulation and ERK2 activation.
Resumo:
The Institute of Public Health in Ireland (IPH) has produced a series of reviews which look at the health impacts of identified subject areas. Four reviews have been produced in the areas of employment, transport, the built environment and education. All reviews may be found at http://www.publichealth.ie/ireland/hiaresources. This resource supplements the ‘Health Impacts of Transport’ report. It highlights a number of organisations whose work considers issues relevant to the relationship between health and transport.
Resumo:
The remit of the Institute of Public Health in Ireland (IPH) is to promote cooperation for public health between Northern Ireland and the Republic of Ireland in the areas of research and information, capacity building and policy advice. Our approach is to support Departments of Health and their agencies in both jurisdictions, and maximise the benefits of all-island cooperation to achieve practical benefits for people in Northern Ireland and the Republic of Ireland.IPH has a keen interest in the interactions between transport and health. IPH has produced two papers in the recent past on this topic, the most recent being Active travel – healthy lives published in January 2011 which built on the 2005 publication Health impacts of transport. The IPH welcomes the draft transport strategy in terms of addressing each of the key messages outlined in the Active travel – healthy lives paper.IPH is interested in this area not only in terms of increasing ‘active travel’ for healthier lives, but also in terms of the environmental and social impacts of inequitable access to forms of private and public transport.
Resumo:
This is the IPH response to the Department for Regional Development's public transport reform consultation.
Resumo:
The Institute of Public Health in Ireland (IPH) aims to improve health on the island of Ireland by working to combat health inequalities and influence public policies in favour of health. The Institute promotes cooperation between Northern Ireland and the Republic of Ireland in public health research, training and policy advice. IPH commends the Regional Development Committee on selecting sustainable transport as its subject for inquiry and welcomes the inquiry’s focus on identifying a move to more sustainable transport in Northern Ireland. IPH thanks the Committee for the opportunity to contribute views and experience
Resumo:
In my first project, I analyzed the role of the amiloride-sensitive epithelial sodium channel ENaC) in the skin during wound healing. ENaC is present in the skin and a function in keratinocyte differentiation and barrier formation has been demonstrated. Previous findings suggested, that ENaC might be implicated in keratinocyte migration, although its role in wound healing was not analyzed yet. Using skin-specific (K14-Cre) conditional ENaC knockout and overexpressing mice, I determined the wound closure kinetic and performed morphometric measurements. The time course of wound repair was not significantly different in knockouts or transgenics when compared to control mice and the morphology of the closing wound was not altered. In my second project, I studied the glucocorticoid-induced leucine zipper (GILZ, Tsc22d3). GILZ is widely expressed and an important role has been predicted in immunity, adipogenesis and renal sodium handling. Mice were generated that constitutively lack all the functional domains of the Gilz gene. In these mice, the expression of GILZ mRNA transcripts and protein were completely abolished in all tissues tested. Surprisingly, knockout mice survived. To test whether GILZ mimicks glucocorticoid action, we studied its implication in T- and B- cell development and in a model of sepsis. We measured cytokine secretion in different inflammatory models, like in peritoneal and bone marrow-derived macrophages, in splenocytes and a model of sepsis. In all our experiments, cytokine secretion from GILZ- deficient cells was not different from controls. From 6 months onwards, knockout mice contained significantly less body fat and were lighter. Following sodium and water deprivation experiments, water and salt homeostasis was preserved. Sterility of knockout males was associated with a severe testis dysplasia, smaller seminiferous tubules, the number of Sertoli and germ cell was reduced while increased apoptosis, but not cell proliferation, was evidenced. The interstitial Leydig cell population was augmented, and higher plasma FSH and testosterone levels were found. Interestingly, the expression of the target gene Ppar2 was diminished in the testis and in the liver, but not in the skin, kidney or fat. Tsc22d1 mRNA transcript level was found to be upregulated in testis, but not in the kidney or fat tissue. In most tissue, excepted the testis, GILZ-deficient mice reveal functional redundancy amongst members of the Tsc22d family or genes involved in the same regulatory pathways. In summary, contrarily to the published in vitro data, GILZ does not play a crucial role attributed in immunology or inflammation, but we identified a novel function in spermatogenesis. -- Dans mon premier projet, j'ai analysé le rôle du canal épithélial sodique sensible à l'amiloride (ENaC) dans la cicatrisation de la peau. ENaC est présent dans la peau et il a une fonction dans la différenciation des kératinocytes et dans la formation de la barrière. Des études suggèrent qu'ENaC pourrait être impliqué dans la migration des kératinocytes, cependant, son rôle dans la cicatrisation n'a pas encore été étudié. A l'aide de souris qui surexpriment ou qui sont knockout pour ENaC, spécifiquement dans la peau (K14-Cre), j'ai analysé le temps de clôture de la cicatrice et j'ai aussi étudié la morphologie de la plaie guérissant. Chez les souris qui surexpriment ou chez les knockouts, la vitesse de fermeture et la morphologie de la cicatrice étaient identiques aux souris contrôles. Dans mon second projet, j'ai étudié le glucocorticoid-induced leucine zipper (GILZ, Tsc22d3). GILZ est largement exprimé et un rôle important a été prédit dans l'immunité, l'adipogénèse et le transport sodique rénal. Des souris ont été générées dont les domaines fonctionnels du gène Gilz sont éliminés. L'expression de GILZ en ARNm et protéine a été complètement abolie dans tous les tissus testés. Étonnamment, ces souris knockout survivent. Afin de tester si GILZ imite les effets des glucocorticoïdes, nous avons étudié son implication dans le développement des cellules T et B ainsi qu'un modèle de septicémie. Nous avons mesuré la sécrétion de cytokines à partir de différents modèles d'inflammation tels que des macrophages péritonéaux ou de moelle, de splénocytes ou encore d'un modèle de septicémie. Dans toutes nos expériences, la sécrétion de cytokines de cellules GILZ-déficientes était semblable. Dès 6 mois, les knockouts contenaient significativement moins de graisses et étaient plus légères. Suite à une privation sodique et aqueuse, l'homéostasie du sel et de l'eau était préservée. Les mâles knockouts présentaient une stérilité accompagnée d'une dysplasie testiculaire sévère, de tubules séminifères étaient plus petits et contenaient un nombre réduit de cellules de Sertoli et de cellules germinales. L'apoptose était augmentée dans ces cellules mais pas la prolifération cellulaire. Le nombre de cellules de Leydig était aussi plus élevé, ainsi que la FSH et la testostérone. L'expression du gène cible Pparγ2 était diminuée dans le testicule et le foie, mais pas dans la peau, le rein ou le tissu adipeux. L'ARNm de Tsc22d1 était plus exprimé dans le testicule, mais pas dans le rein ou le tissu adipeux. Dans la plupart des tissus, sauf le testicule, les souris knockouts révélaient une redondance fonctionnelle des autres membres de la famille Tsc22d ou de gènes impliqués dans les mêmes voies de régulation. En résumé, contrairement aux données in vitro, GILZ ne joue pas un rôle essentiel en immunologie, mais nous avons identifié une nouvelle fonction dans la spermatogénèse.