909 resultados para Transitional Zone
Resumo:
The large seasonal migration of the transition zone chlorophyll front (TZCF) is of interest because a number of marine fauna, both commercial and endangered, appear to track it. Herein we examine the physical dynamics driving this seasonal migration of the TZCF. Vertical processes, traditionally viewed as controlling the dynamical supply of nutrients to surface waters, prove insufficient to explain seasonal variations in nutrient supply to the transition zone. Instead, we find that the horizontal Ekman transport of nutrients from higher latitudes drives the TZCF's southward migration. The estimated horizontal transport of nitrate supports up to 40% of new primary productivity in the region annually and nearly all of new primary productivity in the winter. The significance of horizontal advection to the North Pacific transition zone supports revising the paradigm that nutrients are supplied to surface waters from below. © 2010 by the American Geophysical Union.
Resumo:
Although cell cycle control is an ancient, conserved, and essential process, some core animal and fungal cell cycle regulators share no more sequence identity than non-homologous proteins. Here, we show that evolution along the fungal lineage was punctuated by the early acquisition and entrainment of the SBF transcription factor through horizontal gene transfer. Cell cycle evolution in the fungal ancestor then proceeded through a hybrid network containing both SBF and its ancestral animal counterpart E2F, which is still maintained in many basal fungi. We hypothesize that a virally-derived SBF may have initially hijacked cell cycle control by activating transcription via the cis-regulatory elements targeted by the ancestral cell cycle regulator E2F, much like extant viral oncogenes. Consistent with this hypothesis, we show that SBF can regulate promoters with E2F binding sites in budding yeast.
Resumo:
This study presents a CFD analysis constructed around PHYSICA, an open framework for multi-physics computational continuum mechanics modelling, to investigate the water movement in unsaturated porous media. The modelling environment is based on a cell-centred finite-volume discretisation technique. A number of test cases are performed in order to validate the correct implementation of Richard's equation for compressible and incompressible fluids. The pressure head form of the equation is used together with the constitutive relationships between pressure, volumetric water content and hydraulic conductivity described by Haverkamp and Van Genuchten models. The flow problems presented are associated with infiltration into initially dry soils with homogeneous or layered geologic settings. Comparison of results with the problems selected from literature shows a good agreement and validates the approach and the implementation.
Resumo:
A zone based systems design framework is described and utilised in the implementation of a message authentication code (MAC) algorithm based on symmetric key block ciphers. The resulting block cipher based MAC algorithm may be used to provide assurance of the authenticity and, hence, the integrity of binary data. Using software simulation to benchmark against the de facto cipher block chaining MAC (CBC-MAC) variant used in the TinySec security protocol for wireless sensor networks and the NIST cipher block chaining MAC standard, CMAC; we show that our zone based systems design framework can lead to block cipher based MAC constructs that point to improvements in message processing efficiency, processing throughput and processing latency.