979 resultados para Thermal stress
Resumo:
A new strain of the parasitoid Trichogramma pretiosum, was collected in Rio Verde County, State of Goias, Central Brazil, and designated as T. pretiosum RV. This strain was then found to be the most effective one among several different strains of T. pretiosum tested in a parasitoid selection assay. Therefore, its biological characteristics and thermal requirements were studied, aiming at allowing its multiplication under controlled environmental conditions in the laboratory. The parasitoid was reared on eggs of Pseudoplusia includens and Anticarsia gemmatalis at different constant temperatures within an 18-32 degrees C temperature range. The number of annual generations of the parasitoid was also estimated at those temperatures. Results have shown that T. pretiosum RV developmental time, from egg to adult, was influenced by all temperatures tested within the range, varying from 6.8 to 20.3 days and 6.0 to 17.0 days on eggs of P. includens and A. gemmatalis, respectively. The emergence of T. pretiosum RV from eggs of A. gemmatalis was higher than 94% at all temperatures tested. When this variable was evaluated on eggs of P. includens, however, the figures were higher than that within the 18-30 degrees C range (more than 98%), and were also statistically higher than the emergence observed at 32 degrees C (90.2%). The sex ratio of the parasitoids emerged from eggs of A. gemmatalis decreased from 0.55 to 0.29 at 18-32 degrees C, respectively. However, for those emerged from eggs of P. includens, the sex ratio was similar (0.73, 0.72 and 0.71) at 20, 28 and 32 degrees C, respectively. The lower temperature threshold (Tb) and thermal constant (K) were 10.65 degrees C and 151.25 degree-days when the parasitoid was reared on eggs of P. includens; and 11.64 degrees C and 127.60 degree-days when reared on eggs of A. gemmatalis. The number of generations per month increased from 1.45 to 4.23 and from 1.49 to 4.79 when the parasitoid was reared on eggs of P. includens and A. gemmatalis, respectively, following the increases in the temperature. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Using a numerical implicit model for root water extraction by a single root in a symmetric radial flow problem, based on the Richards equation and the combined convection-dispersion equation, we investigated some aspects of the response of root water uptake to combined water and osmotic stress. The model implicitly incorporates the effect of simultaneous pressure head and osmotic head on root water uptake, and does not require additional assumptions (additive or multiplicative) to derive the combined effect of water and salt stress. Simulation results showed that relative transpiration equals relative matric flux potential, which is defined as the matric flux potential calculated with an osmotic pressure head-dependent lower bound of integration, divided by the matric flux potential at the onset of limiting hydraulic conditions. In the falling rate phase, the osmotic head near the root surface was shown to increase in time due to decreasing root water extraction rates, causing a more gradual decline of relative transpiration than with water stress alone. Results furthermore show that osmotic stress effects on uptake depend on pressure head or water content, allowing a refinement of the approach in which fixed reduction factors based on the electrical conductivity of the saturated soil solution extract are used. One of the consequences is that osmotic stress is predicted to occur in situations not predicted by the saturation extract analysis approach. It is also shown that this way of combining salinity and water as stressors yields results that are different from a purely multiplicative approach. An analytical steady state solution is presented to calculate the solute content at the root surface, and compared with the outputs of the numerical model. Using the analytical solution, a method has been developed to estimate relative transpiration as a function of system parameters, which are often already used in vadose zone models: potential transpiration rate, root length density, minimum root surface pressure head, and soil theta-h and K-h functions.
Resumo:
The influence of arbuscular mycorrhizal fungi (AMF) inoculation on Canavalia ensiformis growth. nutrient and Zn uptake, and on some physiological parameters in response to increasing soil Zn concentrations was studied. Treatments were applied in seven replicates in a 2 x 4 factorial design, consisting of the inoculation or not with the AMF Glomus etunicatum, and the addition of Zn to soil at the concentrations of 0, 100, 300 and 900 mg kg(-1). AMF inoculation enhanced the accumulation of Zn in tissues and promoted biomass yields and root nodulation. Mycorrhizal plants exhibited relative tolerance to Zn up to 300 mg kg(-1) without exhibiting visual symptoms of toxicity, in contrast to non-mycorrhizal plants which exhibited a significant growth reduction at the same soil Zn concentration. The highest concentration of Zn added to soil was highly toxic to the plants. Leaves of plants grown in high Zn concentration exhibited a Zn-induced proline accumulation and also an increase in soluble amino acid contents; however proline contents were lower in mycorrhizal jack beans. Plants in association or not with the AMF exhibited marked differences in the foliar soluble amino acid profile and composition in response to Zn addition to soil. In general, Zn induced oxidative stress which could be verified by increased lipid peroxidation rates and changes in catalase, ascorbate peroxidase, glutathione reductase and superoxide dismutase activities. In summary, G. etunicatum was able to maintain an efficient symbiosis with jack bean plants in moderately contaminated Zn-soils, improving plant performance under those conditions, which is likely to be due to a combination of physiological and nutritional changes caused by the intimate relation between fungus and plant. The enhanced Zn uptake by AMF inoculated jack bean plants might be of interest for phytoremediation purposes. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Most metal ions are toxic to plants, even at low concentrations, despite the fact that some are essential for growth and play key roles in metabolism. The majority of metals induce the formation of reactive oxygen species, which require the synthesis of additional antoxidant compounds and enzymes for their removal. New techniques that have greatly improved the identification, localisation and quantification of metals within plant tissues have led to the science of metallomics. This advancement in knowledge should eventually allow the characterisation of plants used in the process of phytoremediation of soils contaminated with toxic metals.
Resumo:
Chlorophyll a fluorescence parameters and transmission electron microscopy (TEM) were used to assess the stress conditions in water hyacinth along the Paraiba do Sul River (PSR), an important River in southeastern Brazil. The data were obtained at the end of the dry season of 2005 and at the end of the wet season of 2006. Changes in F-o and F-m parameters were observed as differentiated responses, depending on the season. Non-photochemical dissipation (qN and NPQ) from plants was greater in the most industrialized region of the PSR in both seasons. However, F-v/F-m for all samples ranged between 0.77 and 0.81, showing that high maximum quantum yield was maintained. Although the F-v/F-m suggests that the plants were exhibiting normal photochemical activities, ultrastructural changes in chloroplasts showed thylakoids disorganization. Plants from the most industrialized region showed non-stacking grana thylakoids disposition. In spite of these alterations, the membrane integrity was maintained, suggesting an adaptation to adjustment to adverse environmental conditions. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Plant cell cultures are a suitable model system for investigation of the physiological mechanisms of tolerance to environmental stress. We have determined the effects of Cd (0.1 and 0.2 mM CdCl(2)) and Ni (0.075 and 0.75 mM NiCl(2)) on Nicotiana tabacum L. cv. Bright Yellow (TBY-2) cell suspension cultures over a 72-h period. Inhibition of growth, loss of cell viability and lipid peroxidation occurred, in general, only when the TBY-2 cells were grown at 0.2 mM CdCl(2) and at 0.75 mM NiCl(2). At 0.1 mM CdCl(2), a significant increase in growth was determined at the end of the experiment. Increases in the activities of all of the four enzymatic antioxidant defence systems tested, were induced by the two concentrations of Cd and Ni, but at different times during the period of metal exposure. Overall, the cellular antioxidant responses to Cd and Ni were similar and were apparently sufficient to avoid oxidative stress at the lower concentrations of Cd and Ni. The activities of glutathione reductase and glutathione S-transferase increased early but transiently, whereas the activities of catalase and guaiacol peroxidase increased in the latter half of the experimental period. Therefore it is likely that the metabolism of reduced glutathione was enhanced during the initial onset of the stress, while catalase and guaiacol-type peroxidase appeared to play a more important role in the antioxidant response once the stress became severe.
Resumo:
The effects of varying concentrations of cadmium (Cd) on the development of Lycopersicon esculentum cv. Micro-Tom (MT) plants were investigated after 40 days (vegetative growth) and 95 days (fruit production), corresponding to 20 days and 75 days of exposure to CdCl(2), respectively. Inhibition of growth was clearly observed in the leaves after 20 days and was greater after 75 days of growth in 1 mM CdCl(2), whereas the fruits exhibited reduced growth following the exposure to a concentration as low as 0.1 mM CdCl(2). Cd was shown to accumulate in the roots after 75 days of growth but was mainly translocated to the upper parts of the plants accumulating to high concentrations in the fruits. Lipid peroxidation was more pronounced in the roots even at 0.05 mM CdCl(2) after 75 days, whereas in leaves, there was a major increase after 20 days of exposure to 1 mM CdCl(2), but the fruit only exhibited a slight significant increase in lipid peroxidation in plants subjected to 1 mM CdCl(2) when compared with the control. Oxidative stress was also investigated by the analysis of four key antioxidant enzymes, which exhibited changes in response to the increasing concentrations of Cd tested. Catalase (EC 1.11.1.6) activity was shown to increase after 75 days of Cd treatment, but the major increases were observed at 0.1 and 0.2 mM CdCl(2), whereas guaiacol peroxidase (EC 1.11.1.7) did not vary significantly from the control in leaves and roots apart from specific changes at 0.5 and 1 mM CdCl(2). The other two enzymes tested, glutathione reductase (EC 1.6.4.2) and superoxide dismutase (SOD, EC 1.15.1.1), did not exhibit any significant changes in activity, apart from a slight decrease in SOD activity at concentrations above 0.2 mM CdCl(2). However, the most striking results were obtained when an extra treatment was used in which a set of plants was subjected to a stepwise increase in CdCl(2) from 0.05 to 1 mM, leading to tolerance of the Cd applied even at the final highest concentration of 1 mM. This apparent adaptation to the toxic effect of Cd was confirmed by biomass values being similar to the control, indicating a tolerance to Cd acquired by the MT plants.
Resumo:
Studies in which ACTH was administrated in heifers after the occurrence of luteolysis showed a delay in the onset of estrus and the estrus duration was shortened. This study evaluated the effect of acute stress by road transportation on estrous behavior and ovulation, monitored by serum progesterone and cortisol concentrations in cows at the periovulatory period, using a crossover design. Eleven crossbred cows, divided into Control and Transport groups had their estrus cycle synchronized with GnRH, an intravaginal progesterone device, and cloprostenol. Thirty hours after withdrawal of the device, the animals of the Transport group were transported for 60 min by truck and those from the Control group remained at pasture. Ovarian ultrasound examination was performed every 12 h from device withdrawal until ovulation in every cow. From the day after removal of the device until ovulation estrous behavior was monitored 24 h a day. Blood samples for serum cortisol and progesterone concentrations were taken at -90, -60, 0, 30, 60 and 180 min in relation to the end of transportation. Transportation during the estrous period induced stress in cows as reflected by changes in serum concentrations of progesterone and cortisol. However, we did not detect impairment in estrus expression, estrus duration or ovulation (P>0.05). (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The study on the thermal performance of the air-conditioned buildings of the new research centre of the Brazilian Petroleum Company, in the tropical climate of Rio de Janeiro, was part of a bigger research and consultancy, project involving environmental issues. The architectural design was the subject of a national competition in 2004, encompassing over 100,000 m(2). According to the design brief, out of the 10 buildings of the new research centre, 7 have to be either completely or partially air-conditioned, due to specific occupation requirements. The challenge for better thermal performance was related to systems` energy efficiency, to the introduction of natural ventilation and to the notion of adaptive comfort, which were verified with the support of thermal dynamic simulations. At the early stages of the assessments, the potential for natural ventilation in the working spaces considering the mixed-mode strategy achieved 30% of occupation hours. However, the development of the design project led to fully air-conditioned working spaces, due to users` references regarding the conventional culture of the office environment. Nevertheless, the overall architectural approach in accordance to the climatic conditions still showed a contribution to the buildings` energy efficiency. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The effect of thermal treatment on phenolic compounds and type 2 diabetes functionality linked to alpha-glucosidase and alpha-amylase inhibition and hypertension relevant angiotensin I-converting enzyme (ACE) inhibition were investigated in selected bean (Phaseolus vulgaris L,) cultivars from Peru and Brazil using in vitro models. Thermal processing by autoclaving decreased the total phenolic content in all cultivars, whereas the 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity-linked antioxidant activity increased among Peruvian cultivars, alpha-Amylase and alpha-glucosidase inhibitory activities were reduced significantly after heat treatment (73-94% and 8-52%, respectively), whereas ACE inhibitory activity was enhanced (9-15%). Specific phenolic acids such as chlorogenic and caffeic acid increased moderately following thermal treatment (2-16% and 5-35%, respectively). No correlation was found between phenolic contents and functionality associated to antidiabetes and antihypertension potential, indicating that non phenolic compounds may be involved. Thermally processed bean cultivars are interesting sources of phenolic acids linked to high antioxidant activity and show potential for hypertension prevention.
Resumo:
Vitamin PP includes two vitamers, niacin and niacinamide which are essential for energy production. Vitamins are sensitive and losses can occur during shelf life and heating processes. Thermal analysis can provide information about thermal behavior of each vitamer relating them with time and/or temperature exposure. The vitamers thermal behavior were studied by TG/DTG and DSC under air and nitrogen atmosphere and the results showed that niacin is more stable than the niacinamide and the decomposition happens by volatilization at 238 A degrees C while niacinamide melts at 129 A degrees C and volatilize at 254 A degrees C when there is the total mass loss in the TG/DTG curves.
Resumo:
The diet and plasma lipid patterns associated with lipid oxidation susceptibility in rats fed different doses of polyunsaturated fatty acids (n-3 PUFA) from fish oil were evaluated. Wistar rats were assigned into three groups and received diets containing 8% soybean oil (SOY), 4% soybean oil + 4% fish oil (SOY-FISH) and 8% fish oil (FISH) for 21 days. Linoleic, oleic and alpha-linolenic acids in SOY diets were substituted by myristic, palmitic, palmitoleic, eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids in SOY-FISH and FISH diets reducing the n-6/n-3 ratio and increasing the peroxidability index (PI). Increased dietary EPA and DHA were observed in SOY-FISH and FISH plasma at the expense of linoleic and arachidonic acid levels. Saturated fatty acids, which were significantly different between the three diets (P < 0.01), were found at the same concentration in the plasma (P = 0.23). No changes were observed in oxidative stress as measured by the concentration of thiobarbituric acid reactive substances (TBARS) expressed in brain homogenates. However, TBARS concentration in the plasma of the SOY-FISH group was higher than the other two groups (P = 0.02). The major differences between these three groups were the n-3 PUFA content (0.4, 1.8 and 3.2 g/100 g diet) and the saturates/polyunsaturates ratio (0.3, 0.5 and 0.8) for SOY, SOY-FISH, and FISH groups, respectively. Thus, n-3 PUFA intake from fish oil only when followed by a decrease in saturated/polyunsaturated fatty acids ratio increased oxidative susceptibility in rats measured by plasma TBARS concentration. PRACTICAL APPLICATIONS Because fish oil intake is associated with risk reduction for cardiovascular disease, individuals are taking supplements containing a high dose of fish oil. However, there is no scientific consensus if the intake of a high dose of fish oil could increase the oxidative stress. Thus, more studies are necessary to assure the safety of this kind of supplementation.
Resumo:
The objective of this research was to verify the effect of drying conditions on thermal properties and resistant starch content of green banana flour (Musa cavendishii). The green banana flour is a complex-carbohydrates source, mainly of resistant starch, and quantifying its gelatinization is important to understand how it affects food processing and the functional properties of the flour. The green banana flour was obtained by drying unripe peeled bananas (first stage of ripening) in a dryer tunnel at 52 degrees C, 55 degrees C and 58 degrees C and air velocity at 0.6 m s(-1), 1.0 m s(-1) and 1.4 m s(-1). The results obtained from differential scanning calorimetry, (DSC) curves show a single endothermic transition and a flow of maximum heating at peak temperatures from (67.95 +/- 0.31)degrees C to (68.63 +/- 0.28) degrees C. ANOVA shows that only drying temperature influenced significantly (P < 0.05) the gelatinization peak temperature (Tp). Gelatinization enthalpy (Delta H) varied from 9.04 J g(-1) to 11.63 J g(-1) and no significant difference was observed for either temperature or air velocity. The resistant starch content of the flour produced varied from (40.9 +/- 0.4) g/100 g to (58.5 +/- 5.4) g/100 g, on dry basis (d. b.), and was influenced by the combination of drying conditions: flour produced at 55 degrees C/1.4 m s(-1) and 55 degrees C/1.0 m s(-1) presented higher content of resistant starch. (c) 2009 Elsevier Ltd. All rights reserved
Resumo:
Introduction: Although the combination of statins with n-3 fatty acids seems to be beneficial under the lipid profile aspect, there is little information about the interaction of these two compounds on oxidative stress. Objective: Evaluate the interaction between statins and n-3 fatty acids on oxidative stress in women, using a 2(2) factorial design. Methods: Forty-three women participated in this crossover design. They were separated into two groups in which 20 were under statin treatment for more than 6 months, and 23 were normolipidemic. Within each group, half of the patients received capsules containing 2.4 g/day of a mixture of EPA and DHA for 6 weeks, while the other half received a mixture of soya and corn oil. After a period of 90 days of washout, the groups were switched, and received the supplementation for 6 weeks more. Results: Statins reduced serum LDL and increased SOD expression. n-3 fatty acids increased the plasma malondialdehyde and SOD activity but reduced catalase expression (p < 0.05). The interaction involving statins and n-3 fatty acids was nearly significant to the serum triacylglycerol reduction (p = 0.054). Conclusion: Combining statins and n-3 fatty acids is an excellent strategy to reduce plasma cholesterol and triacylglycerol concentration in women. However, n-3 fatty acids increased the oxidative stress and the pleiotropic effect of statins seemed to be not enough to counterbalance this result. Our data also suggested that the mechanism by which n-3 fatty acids interfere in oxidative stress can be associated with antioxidant enzymes expression and activity. (C) 2010 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Oxidative stress is a physiological condition that is associated with atherosclerosis. and it can be influenced by diet. Our objective was to group fifty-seven individuals with dyslipidaemia controlled by statins according to four oxidative biomarkers, and to evaluate the diet pattern and blood biochemistry differences between these groups. Blood samples were collected and the following parameters were evaluated: diet intake; plasma fatty acids; lipoprotein concentration; glucose; oxidised LDL (oxLDL); malondialdehyde (MDA): total antioxidant activity by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing ability power assays. Individuals were separated into five groups by cluster analysis. All groups showed a difference with respect to at least one of the four oxidative stress biomarkers. The separation of individuals in the first axis was based upon their total antioxidant activity. Clusters located on the right side showed higher total antioxidant activity, higher myristic fatty acid and lower arachidonic fatty acid proportions than clusters located on the left side. A negative correlation was observed between DPPH and the peroxidability index. The second axis showed differences in oxidation status as measured by MDA and oxLDL concentrations. Clusters located on the Upper side showed higher oxidative status and lower HDL cholesterol concentration than clusters located on the lower side. There were no differences in diet among the five clusters. Therefore, fatty acid synthesis and HDL cholesterol concentration seem to exert a more significant effect on the oxidative conditions of the individuals with dyslipidaemia controlled by statins than does their food intake.