939 resultados para The central core


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The central nervous system (CNS) comprises the brain, spinal cord, optic nerves and retina, and contains post-mitotic, delicate cells. As the rigid coverings of the CNS render swelling dangerous and destructive, inflammatory reactions must be carefully controlled in CNS tissues. Nevertheless, effector immune responses that protect the host during CNS infection still occur in the CNS. Here, we describe the anatomical and cellular basis of immune surveillance in the CNS, and explain how this shapes the unique immunology of these tissues. The Review focuses principally on insights gained from the study of autoimmune responses in the CNS and to a lesser extent on models of infectious disease. Furthermore, we propose a new model to explain how antigen-specific T cell responses occur in the CNS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To perform their distinct effector functions, pathogen-specific T cells have to migrate to target tissue where they recognize antigens and produce cytokines that elicit appropriate types of protective responses. Similarly, migration of pathogenic self-reactive T cells to target organs is an essential step required for tissue-specific autoimmunity. In this article, we review data from our laboratory as well as other laboratories that have established that effector function and migratory capacity are coordinately regulated in different T-cell subsets. We then describe how pathogenic T cells can enter into intact or inflamed central nervous system (CNS) to cause experimental autoimmune encephalomyelitis or multiple sclerosis. In particular, we elaborate on the role of CCR6/CCL20 axis in migration through the choroid plexus and the involvement of this pathway in immune surveillance of and autoimmunity in the CNS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The brain is in many ways an immunologically and pharmacologically privileged site. The blood-brain barrier (BBB) of the cerebrovascular endothelium and its participation in the complex structure of the neurovascular unit (NVU) restrict access of immune cells and immune mediators to the central nervous system (CNS). In pathologic conditions, very well-organized immunologic responses can develop within the CNS, raising important questions about the real nature and the intrinsic and extrinsic regulation of this immune privilege. We assess the interactions of immune cells and immune mediators with the BBB and NVU in neurologic disease, cerebrovascular disease, and intracerebral tumors. The goals of this review are to outline key scientific advances and the status of the science central to both the neuroinflammation and CNS barriers fields, and highlight the opportunities and priorities in advancing brain barriers research in the context of the larger immunology and neuroscience disciplines. This review article was developed from reports presented at the 2011 Annual Blood-Brain Barrier Consortium Meeting.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The central nervous system (CNS) has long been regarded as an immune privileged organ implying that the immune system avoids the CNS to not disturb its homeostasis, which is critical for proper function of neurons. Meanwhile, it is accepted that immune cells do in fact gain access to the CNS and that immune responses can be mounted within this tissue. However, the unique CNS microenvironment strictly controls these immune reactions starting with tightly controlling immune cell entry into the tissue. The endothelial blood-brain barrier (BBB) and the epithelial blood-cerebrospinal fluid (CSF) barrier, which protect the CNS from the constantly changing milieu within the bloodstream, also strictly control immune cell entry into the CNS. Under physiological conditions, immune cell migration into the CNS is kept at a very low level. In contrast, during a variety of pathological conditions of the CNS such as viral or bacterial infections, or during inflammatory diseases such as multiple sclerosis, immunocompetent cells readily traverse the BBB and likely also the choroid plexus and subsequently enter the CNS parenchyma or CSF spaces. This chapter summarizes our current knowledge of immune cell entry across the blood CNS barriers. A large body of the currently available information on immune cell entry into the CNS has been derived from studying experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis. Therefore, most of this chapter discussing immune cell entry during CNS pathogenesis refers to observations in the EAE model, allowing for the possibility that other mechanisms of immune cell entry into the CNS might apply under different pathological conditions such as bacterial meningitis or stroke.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three Clark faculty members are studying the development of the Worcester Biotechnology Cluster for any lessons it might hold for current efforts to catalyze the growth of a sustainable energy/green jobs cluster in Worcester or elsewhere. Mary Ellen Boyle (GSOM), Jennie Stephens (IDCE/ESP), and Jing Zhang (GSOM) have conducted extensive in-depth interviews and combed the literature of cluster development to produce several articles and working papers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A comprehensive inventory of local and introduced soil and water conservation (SWC) measures presented in standardized fact sheets and completed with a special focus on the underlying reasons (problems) of acceptance / rejection. Different approaches are analysed and measures identified which are adapted to the specific local context. Second part of the study: soil assessment resulting in a consistent local classification of soil types and soil fertility, comparison with scientific classifications. Different topical maps show the spatial distribution of SWC measures, their condition, degradation hotspots, soil types, soil fertility and interrelations between these parameters. Based on the conclusions and the outcome of a stakeholder workshop recommendations are given for further activities in research and implementation of SWC in the Central Highlands of Eritrea.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This phase III trial compared the efficacy and safety of gemcitabine (Gem) plus capecitabine (GemCap) versus single-agent Gem in advanced/metastatic pancreatic cancer.