976 resultados para Th2 Cells -- secretion
Resumo:
Currently, MVA virus vectors carrying HIV-1 genes are being developed as HIV-1/AIDS prophylactic/therapeutic vaccines. Nevertheless, little is known about the impact of these vectors on human dendritic cells (DC) and their capacity to present HIV-1 antigens to human HIV-specific T cells. This study aimed to characterize the interaction of MVA and MVA expressing the HIV-1 genes Env-Gag-Pol-Nef of clade B (referred to as MVA-B) in human monocyte-derived dendritic cells (MDDC) and the subsequent processes of HIV-1 antigen presentation and activation of memory HIV-1-specific T lymphocytes. For these purposes, we performed ex vivo assays with MDDC and autologous lymphocytes from asymptomatic HIV-infected patients. Infection of MDDC with MVA-B or MVA, at the optimal dose of 0.3 PFU/MDDC, induced by itself a moderate degree of maturation of MDDC, involving secretion of cytokines and chemokines (IL1-ra, IL-7, TNF-α, IL-6, IL-12, IL-15, IL-8, MCP-1, MIP-1α, MIP-1β, RANTES, IP-10, MIG, and IFN-α). MDDC infected with MVA or MVA-B and following a period of 48 h or 72 h of maturation were able to migrate toward CCL19 or CCL21 chemokine gradients. MVA-B infection induced apoptosis of the infected cells and the resulting apoptotic bodies were engulfed by the uninfected MDDC, which cross-presented HIV-1 antigens to autologous CD8+ T lymphocytes. MVA-B-infected MDDC co-cultured with autologous T lymphocytes induced a highly functional HIV-specific CD8+ T cell response including proliferation, secretion of IFN-γ, IL-2, TNF-α, MIP-1β, MIP-1α, RANTES and IL-6, and strong cytotoxic activity against autologous HIV-1-infected CD4+ T lymphocytes. These results evidence the adjuvant role of the vector itself (MVA) and support the clinical development of prophylactic and therapeutic anti-HIV vaccines based on MVA-B.
Resumo:
The artificial dsRNA polyriboinosinic acid-polyribocytidylic acid, poly(I:C), is a potent adjuvant candidate for vaccination, as it strongly drives cell-mediated immunity. However, because of its effects on non-immune bystander cells, poly(I:C) administration may bear danger for the development of autoimmune diseases. Thus poly(I:C) should be applied in the lowest dose possible. We investigated microspheres carrying surface-assembled poly(I:C) as a two-in-one adjuvant formulation to stimulate maturation of monocyte-derived dendritic cells (MoDCs). Negatively charged polystyrene microspheres were equipped with a poly(ethylene glycol) corona through electrostatically driven surface assembly of a library of polycationic poly(l-lysine)-graft-poly(ethylene glycol) copolymers, PLL-g-PEG. Stable surface assembly of poly(I:C) was achieved by incubation of polymer-coated microspheres in an aqueous poly(I:C) solution. Surface-assembled poly(I:C) exhibited a strongly enhanced efficacy to stimulate maturation of MoDCs by up to two orders of magnitude, as compared to free poly(I:C). Multiple phagocytosis events were the key factor to enhance the efficacy. The cytokine secretion pattern of MoDCs after exposure to surface-assembled poly(I:C) differed from that of free poly(I:C), while their ability to stimulate T cell proliferation was similar. Overall, phagocytic signaling plays an important role in defining the resulting immune response to such two-in-one adjuvant formulations.
Resumo:
The bleeding disorder Bernard-Soulier syndrome (BSS) is caused by mutations in the genes coding for the platelet glycoprotein GPIb/IX receptor. The septin SEPT5 is important for active membrane movement such as vesicle trafficking and exocytosis in non-dividing cells (i.e. platelets, neurons). We report on a four-year-old boy with a homozygous deletion comprising not only glycoprotein Ibβ (GP1BB) but also the SEPT5 gene, located 5' to GP1BB. He presented with BSS, cortical dysplasia (polymicrogyria), developmental delay, and platelet secretion defect. The homozygous deletion of GP1BB and SEPT5, which had been identified by PCR analyses, was confirmed by Southern analyses and denaturing HPLC (DHPLC). The parents were heterozygous for this deletion. Absence of GPIbβ and SEPT5 proteins in the patient's platelets was illustrated using transmission electron microscopy. Besides decreased GPIb/IX expression, flow cytometry analyses revealed impaired platelet granule secretion. Because the bleeding disorder was extremely severe, the boy received bone marrow transplantation (BMT) from a HLA-identical unrelated donor. After successful engraftment of BMT, he had no more bleeding episodes. Interestingly, also his mental development improved strikingly after BMT. This report describes for the first time a patient with SEPT5 deficiency presenting with cortical dysplasia (polymicrogyria), developmental delay, and platelet secretion defect.
Resumo:
The role of the gluco-incretin hormones GIP and GLP-1 in the control of beta cell function was studied by analyzing mice with inactivation of each of these hormone receptor genes, or both. Our results demonstrate that glucose intolerance was additively increased during oral glucose absorption when both receptors were inactivated. After intraperitoneal injections, glucose intolerance was more severe in double- as compared to single-receptor KO mice, and euglycemic clamps revealed normal insulin sensitivity, suggesting a defect in insulin secretion. When assessed in vivo or in perfused pancreas, insulin secretion showed a lack of first phase in Glp-1R(-/-) but not in Gipr(-/-) mice. In perifusion experiments, however, first-phase insulin secretion was present in both types of islets. In double-KO islets, kinetics of insulin secretion was normal, but its amplitude was reduced by about 50% because of a defect distal to plasma membrane depolarization. Thus, gluco-incretin hormones control insulin secretion (a) by an acute insulinotropic effect on beta cells after oral glucose absorption (b) through the regulation, by GLP-1, of in vivo first-phase insulin secretion, probably by an action on extra-islet glucose sensors, and (c) by preserving the function of the secretory pathway, as evidenced by a beta cell autonomous secretion defect when both receptors are inactivated.
Resumo:
Here we evaluated the effect of leptin on glucose-induced insulin secretion by normal rat pancreatic islets. We show in perifusion experiments that leptin had no acute effect on the secretory activity of beta-cells. However, following preexposure to leptin a pronounced time- and dose-dependent inhibition of both first and second phases of secretion was observed. Maximum inhibition was obtained at 24 h and with 100 nM leptin. This inhibition did not involve a decrease in cellular insulin content. It was also not observed with islets from fa/fa rats. Leptin thus inhibits insulin secretion by a mechanism which requires long-term preexposure to the hormone and which may involve alteration in beta-cell gene expression.
Resumo:
The dopamine antagonist [3H]-domperidone-[3H]-DOM-bound to a single class of high-affinity (Kd = 1.24 +/- 0.14 nM) and saturable receptors on dispersed bovine anterior pituitary (AP) cells. The binding of [3H]-DOM was stereoselective and reversible with agonists and antagonists. Dopamine competitions for [3H]-DOM binding modeled best for a single site consistent with an interaction with a homogeneous population of receptors. The mean number of specific binding sites labeled by [3H]-DOM was 53,000 per cell in dispersed AP cells consisting of 42% lactotrophs. Dispersed bovine AP cells attached to extracellular matrix within 3 h, and prolactin secretion from these cells was effectively inhibited by dopamine. Several observations suggested that [3H]-DOM-labeled receptors on dispersed bovine AP cells were restricted to the outer plasma membrane and not internalized. These included (1) the rapid and complete dissociation of specific [3H]-DOM binding; (2) the ability of treatment with acid or proteolytic enzymes to entirely remove specifically bound [3H]-DOM, and (3) the lack of effect of metabolic inhibitors on specific [3H]-DOM binding.
Resumo:
The crucial role of the proinflammatory cytokine interleukin 1β (IL-1β) in driving inflammatory disorders, such as Muckle-Wells syndrome and gout, has been extensively characterised. Owing to its high potency to induce inflammation the activation and secretion of IL-1β is tightly regulated. The sensing of various host 'dangers', including infections and metabolic deregulation, results in the formation of large protein complexes, termed inflammasomes. Formation of the inflammasomes leads to the cleavage and activation of caspase-1, which in turn proteolytically processes its substrates, including pro-IL-1β. Biologically active IL-1β is subsequently secreted by the cell. In contrast to IL-1β, little is known about mechanisms underlying the activation and secretion of its close homologue IL-1α. Moreover, the physiological role of IL-1α is still not well defined. Several studies hypothesise that IL-1α serves as a danger signal, which is passively released from dying cells. However, recent studies suggest a more complex function of this cytokine. Indeed, NLRP3 inflammasome agonists such as uric acid crystal or nigericin induce IL-1α cleavage and secretion, leading to the cosecretion of both IL-1β and IL-1α. Depending on the type of NLRP3 agonist, release of IL-1α is NLRP3-inflammasome/caspase-1 dependent or independent, but in both cases IL-1α processing depends on calpain protease activity. Taken together, these results suggest that the promotion and progression of inflammatory diseases is not solely due to IL-1β but also to its close relative IL-1α. This should be considered when IL-1 blockade is applied as a therapeutic strategy for diseases such as cryopyrin-associated periodic syndromes or gout.
Resumo:
Inhibitory receptors are involvedin the induction of T cell dysfunctionand exhaustion in chronic viral infectionsand in tumors. In the presentstudy, we analyzed the expressionpattern of 3 different inhibitory receptors(PD-1, Lag-3, 2B4) in a murine Bcell lymphoma model. Furthermore,we functionally characterized CD8+T cells expressing inhibitory receptorsfor cytokine production and proliferation.Expansion and secretion ofpro-inflammatory cytokines of CD8+T cells from lymphoma-bearing E-myc mice were significantly reducedcompared to the healthy controls.Similarly, expansion and effectorfunction of CD8+ TCR transgenic(p14) Tcells specific for the gp-33 antigenof lymphocytic choriomeningitisvirus (LCMV) was reduced inlymphoma-bearing E-myc mice afteractivation with LCMV. The functionalimpairment of CTL in the presenceof lymphoma was reversible aftertransfer to naive C57BL/6 recipients.In vitro co-culture experimentsrevealed that the proliferation ofanti-CD3-activated CD8+ T cellsfrom WT mice was significantly inhibitedby CD19+ lymphoma cellsfrom E-myc mice, whereas no inhibitionwas observed after co-culturewith normal B cells. Supernatants ofin vitro cultured lymphoma B cellsand blood sera from lymphoma-bearingE-myc mice significantly reducedT cell proliferation in vitro, ascompared to supernatants from normalB cells cultures or sera of healthyanimals. These experiments indicatethat the lymphoma B cells inactivateCTL by a soluble factor. Expressionanalysis of different important immunologicalcytokines revealed that themacrophage migration inhibitory factor(MIF) is selectively overexpressedin malignant B cells. This finding wasconfirmed by analyzing MIF proteinin culture supernatants and in celllysates. Therefore, lymphoma B cellsmay reduce T cell function and suppresslymphoma surveillance by secretionof MIF.
Resumo:
OBJECTIVE: Pancreatic beta-cells exposed to proinflammatory cytokines display alterations in gene expression resulting in defective insulin secretion and apoptosis. MicroRNAs are small noncoding RNAs emerging as key regulators of gene expression. Here, we evaluated the contribution of microRNAs to cytokine-mediated beta-cell cytotoxicity. RESEARCH DESIGN AND METHODS: We used global microarray profiling and real-time PCR analysis to detect changes in microRNA expression in beta-cells exposed to cytokines and in islets of pre-diabetic NOD mice. We assessed the involvement of the microRNAs affected in cytokine-mediated beta-cell failure by modifying their expression in insulin-secreting MIN6 cells. RESULTS: We found that IL-1beta and TNF-alpha induce the expression of miR-21, miR-34a, and miR-146a both in MIN6 cells and human pancreatic islets. We further show an increase of these microRNAs in islets of NOD mice during development of pre-diabetic insulitis. Blocking miR-21, miR-34a, or miR-146a function using antisense molecules did not restore insulin-promoter activity but prevented the reduction in glucose-induced insulin secretion observed upon IL-1beta exposure. Moreover, anti-miR-34a and anti-miR-146a treatment protected MIN6 cells from cytokine-triggered cell death. CONCLUSIONS: Our data identify miR-21, miR-34a, and miR-146a as novel players in beta-cell failure elicited in vitro and in vivo by proinflammatory cytokines, notably during the development of peri-insulitis that precedes overt diabetes in NOD mice.
Resumo:
The ability to efficiently produce recombinant proteins in a secreted form is highly desirable and cultured mammalian cells such as CHO cells have become the preferred host as they secrete proteins with human-like post-translational modifications. However, attempts to express high levels of particular proteins in CHO cells may consistently result in low yields, even for non-engineered proteins such as immunoglobulins. In this study, we identified the responsible faulty step at the stage of translational arrest, translocation and early processing for such a "difficult-to-express" immunoglobulin, resulting in improper cleavage of the light chain and its precipitation in an insoluble cellular fraction unable to contribute to immunoglobulin assembly. We further show that proper processing and secretion were restored by over-expressing human signal receptor protein SRP14 and other components of the secretion pathway. This allowed the expression of the difficult-to-express protein to high yields, and it also increased the production of an easy-to-express protein. Our results demonstrate that components of the secretory and processing pathways can be limiting, and that engineering of the secretory pathway may be used to improve the secretion efficiency of therapeutic proteins from CHO cells.
Resumo:
The activation of an apo-cytochrome c-specific T cell clone was found to differ, depending on the antigen-presenting cell population. Whereas total syngeneic spleen cells and bone marrow macrophages could be shown to trigger proliferation, IL 2, and MAF production by the T cell clone, a B cell lymphoma only induced MAF secretion. Further studies demonstrated that this effect was not due to a different antigen processing by the B lymphoma or to limiting amounts of Ia and antigen molecules on the B lymphoma cell surface. The dissociation of induction of MAF production from IL-2 production/proliferation found with the different antigen-presenting cells indicates strongly that molecules other than Ia and antigen may be required for the complete functional activation of antigen-specific T cell clones.
Resumo:
Non-insulin-dependent, or type II, diabetes mellitus is characterized by a progressive impairment of glucose-induced insulin secretion by pancreatic beta cells and by a relative decreased sensitivity of target tissues to the action of this hormone. About one third of type II diabetic patients are treated with oral hypoglycemic agents to stimulate insulin secretion. These drugs however risk inducing hypoglycemia and, over time, lose their efficacy. An alternative treatment is the use of glucagon-like peptide-1 (GLP-1), a gut peptidic hormone with a strong insulinotropic activity. Its activity depends of the presence of normal blood glucose concentrations and therefore does not risk inducing hypoglycemia. GLP-1 can correct hyperglycemia in diabetic patients, even in those no longer responding to hypoglycemic agents. Because it is a peptide, GLP-1 must be administered by injection; this may prevent its wide therapeutic use. Here we propose to use cell lines genetically engineered to secrete a mutant form of GLP-1 which has a longer half-life in vivo but which is as potent as the wild-type peptide. The genetically engineered cells are then encapsulated in semi-permeable hollow fibers for implantation in diabetic hosts for constant, long-term, in situ delivery of the peptide. This approach may be a novel therapy for type II diabetes.
Resumo:
1. (1-36)-NPY is a vasoconstrictor peptide widely distributed in sympathetic nerve terminals. This peptide exerts an inhibitory action on renin release induced by various stimuli. Post-synaptic neuropeptide Y (NPY) receptors show a high affinity for (1-36)-NPY as well as for the agonist (Pro34)-NPY, while presynaptic receptors bind preferentially (13-36)-NPY. 2. This study was undertaken to assess whether the NPY induced renin suppression in awake normotensive rats infused with the beta-adrenoceptor stimulant isoproterenol is mediated by activation of pre- or post-synaptic receptors. 3. Non-pressor doses of (1-36)-NPY and (Pro34)-NPY markedly attenuated the renin secretion triggered by isoproterenol whereas (13-36)-NPY had no effect. This suggests that the effect of NPY on renin release is due to the stimulation of post-synaptic receptors. However it remains unknown whether NPY acts directly on juxtaglomerular cells or indirectly by modifying intraglomerular haemodynamics.
Resumo:
Tumor-host interaction is a key determinant during cancer progression, from primary tumor growth to metastatic dissemination. At each step, tumor cells have to adapt to and subvert different types of microenvironment, leading to major phenotypic and genotypic alterations that affect both tumor and surrounding stromal compartments. Understanding the molecular mechanisms that govern tumor-host interplay may be essential for better comprehension of tumorigenesis in an effort to improve current anti-cancer therapies. The present work is composed of two projects that address tumor-host interactions from two different perspectives, the first focusing on the characterization of tumor-associated stroma and the second on membrane trafficking in tumor cells. Part 1. To selectively address stromal gene expression changes during cancer progression, oligonucleotide-based Affymetrix microarray technology was used to analyze the transcriptomes of laser-microdissected stromal cells derived from invasive human breast and prostate carcinoma. Comparison showed that invasive breast and prostate cancer elicit distinct, tumor-specific stromal responses, with a limited panel of shared induced and/or repressed genes. Both breast and prostate tumor-specific deregulated stromal gene sets displayed statistically significant survival-predictive ability for their respective tumor type. By contrast, a stromal gene signature common to both tumor types did not display prognostic value, although expression of two individual genes within this common signature was found to be associated with patient survival. Part 2. GLG1 is known as an E-selectin ligand and an intracellular FGF receptor, depending on cell type and context. Immunohistochemical and immunofluorescence analyses showed that GLG1 is primarily localized in the Golgi of human tumor cells, a central location in the biosynthetic/secretory pathways. GLG1 has been shown to interact with and to recruit the ARF GEF BIGI to the Golgi membrane. Depletion of GLG1 or BIGI markedly reduced ARF3 membrane localization and activation, and altered the Golgi structure. Interestingly, these perturbations did not impair constitutive secretion in general, but rather seemed to impair secretion of a specific subset of proteins that includes MMP-9. Thus, GLG1 coordinates ARF3 activation by recruiting BIGI to the Golgi membrane, thereby affecting secretion of specific molecules. - Les interactions tumeur-hôte constituent un élément essentiel à la progression tumorale, de la croissance de la tumeur primaire à la dissémination des métastases. A chaque étape, les cellules tumorales doivent s'adapter à différents types de microenvironnement et les détourner à leur propre avantage, donnant lieu à des altérations phénotypiques et génotypiques majeures qui affectent aussi bien la tumeur elle-même que le compartiment stromal environnant. L'étude des mécanismes moléculaires qui régissent les interactions tumeur-hôte constitue une étape essentielle pour une meilleure compréhension du processus de tumorigenèse dans le but d'améliorer les thérapies anti cancer existantes. Le travail présenté ici est composé de deux projets qui abordent la problématique des interactions tumeur-hôte selon différentes perspectives, le premier se concentrant sur la caractérisation du stroma tumoral et le second sur le trafic intracellulaire des cellules tumorales. Partie 1. Pour examiner les changements d'expression des gènes dans le stroma en réponse à la progression du cancer, des puces à ADN Affymetrix ont été utilisées afin d'analyser les transcriptomes des cellules stromales issues de carcinomes invasifs du sein et de la prostate et collectées par microdissection au laser. L'analyse comparative a montré que les cancers invasifs du sein et de la prostate provoquent des réponses stromales spécifiques à chaque type de tumeur, et présentent peu de gènes induits ou réprimés de façon similaire. L'ensemble des gènes dérégulés dans le stroma associé au cancer du sein, ou à celui de la prostate, présente une valeur pronostique pour les patients atteints d'un cancer du sein, respectivement de la prostate. En revanche, la signature stromale commune aux deux types de cancer n'a aucune valeur prédictive, malgré le fait que l'expression de deux gènes présents dans cette liste soit liée à la survie des patients. Partie 2. GLG1 est connu comme un ligand des sélectines E ainsi que comme récepteur intracellulaire pour des facteurs de croissances FGFs selon le type de cellule dans lequel il est exprimé. Des analyses immunohistochimiques et d'immunofluorescence ont montré que dans les cellules tumorales, GLG1 est principalement localisé au niveau de l'appareil de Golgi, une place centrale dans la voie biosynthétique et sécrétoire. Nous avons montré que GLG1 interagit avec la protéine BIGI et participe à son recrutement à la membrane du Golgi. L'absence de GLG1 ou de BIGI réduit drastiquement le pool d'ARF3 associé aux membranes ainsi que la quantité d'ARF3 activés, et modifie la structure de l'appareil de Golgi. Il est particulièrement intéressant de constater que ces perturbations n'ont pas d'effet sur la sécrétion constitutive en général, mais semblent plutôt affecter la sécrétion spécifique d'un sous-groupe défini de protéines comprenant MMP-9. GLG1 coordonne donc l'activation de ARF3 en recrutant BIGI à la membrane du Golgi, agissant par ce moyen sur la sécrétion de molécules spécifiques.
NLRC4 inflammasomes in dendritic cells regulate noncognate effector function by memory CD8⁺ T cells.
Resumo:
Memory T cells exert antigen-independent effector functions, but how these responses are regulated is unclear. We discovered an in vivo link between flagellin-induced NLRC4 inflammasome activation in splenic dendritic cells (DCs) and host protective interferon-γ (IFN-γ) secretion by noncognate memory CD8(+) T cells, which could be activated by Salmonella enterica serovar Typhimurium, Yersinia pseudotuberculosis and Pseudomonas aeruginosa. We show that CD8α(+) DCs were particularly efficient at sensing bacterial flagellin through NLRC4 inflammasomes. Although this activation released interleukin 18 (IL-18) and IL-1β, only IL-18 was required for IFN-γ production by memory CD8(+) T cells. Conversely, only the release of IL-1β, but not IL-18, depended on priming signals mediated by Toll-like receptors. These findings provide a comprehensive mechanistic framework for the regulation of noncognate memory T cell responses during bacterial immunity.