946 resultados para Teaching 1st Order Equation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mathematics Subject Classification: 45G10, 45M99, 47H09

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mathematics Subject Classification: 26A33; 70H03, 70H25, 70S05; 49S05

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mathematics Subject Classi¯cation 2010: 26A33, 65D25, 65M06, 65Z05.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

MSC 2010: 26A33, 34A37, 34K37, 34K40, 35R11

Relevância:

30.00% 30.00%

Publicador:

Resumo:

MSC 2010: 26A33, 70H25, 46F12, 34K37 Dedicated to 80-th birthday of Prof. Rudolf Gorenflo

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the extraordinary aspects of nonlinear wave evolution which has been observed as the spontaneous occurrence of astonishing and statistically extraordinary amplitude wave is called rogue wave. We show that the eigenvalues of the associated equation of nonlinear Schrödinger equation are almost constant in the vicinity of rogue wave and we validate that optical rogue waves are formed by the collision between quasi-solitons in anomalous dispersion fiber exhibiting weak third order dispersion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 34K15.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Красимир Манев, Милослав Средков, Петър Армянов - Състезателните системи (СС) са незаменимо средство за организация на състезания по програмиране. Напоследък СС се използват и в обучението по програмиране. В статията е предложена платформа, която да интегрира възможностите на СС, създадени или използвани от авторите. Целта е изграждането на проста и ефективна среда за обучение по програмиране, подпомагаща учебния процес. Специфицирани са основните елементи на платформата, като резултат от предходно изследване, и една нейна възможна архитектура.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2010 Mathematics Subject Classification: 34A30, 34A40, 34C10.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An algorithm is produced for the symbolic solving of systems of partial differential equations by means of multivariate Laplace–Carson transform. A system of K equations with M as the greatest order of partial derivatives and right-hand parts of a special type is considered. Initial conditions are input. As a result of a Laplace–Carson transform of the system according to initial condition we obtain an algebraic system of equations. A method to obtain compatibility conditions is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Report published in the Proceedings of the National Conference on "Education and Research in the Information Society", Plovdiv, May, 2014

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2010 Mathematics Subject Classification: 60E05, 62P05.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 34C10, 34C15.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 34C10, 34C15.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 39A10.