937 resultados para TRANSFORMER NONLINEAR MODEL


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on the principle given in nonlinear diffusion-reaction dynamics, a new dynamic model for dislocation patterning is proposed by introducing a relaxation time to the relation between dislocation density and dislocation flux. The so-called chemical potential like quantities, which appear in the model can be derived from variation principle for free energy functional of dislocated media, where the free energy density function is expressed in terms of not only the dislocation density itself but also their spatial gradients. The Linear stability analysis on the governing equations of a simple dislocation density shows that there exists an intrinsic wave number leading to bifurcation of space structure of dislocation density. At the same time, the numerical results also demonstrate the coexistence and transition between different dislocation patterns.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Motivated by the observation of the rate effect on material failure, a model of nonlinear and nonlocal evolution is developed, that includes both stochastic and dynamic effects. In phase space a transitional region prevails, which distinguishes the failure behavior from a globally stable one to that of catastrophic. Several probability functions are found to characterize the distinctive features of evolution due to different degrees of nucleation, growth and coalescence rates. The results may provide a better understanding of material failure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper revisits a simple beam model used by Chater et al. (1983, Proc. IUTAM Symp. Collapse, Cambridge University Press) to examine the dynamics of propagating buckles on it. It was found that, if a buckle is initiated at a constant pressure higher than the propagation pressure of the model (P-p), the buckle accelerates and gradually reaches a constant velocity which depends upon the pressure, while if it is initiated at P-p, the buckle propagates at a velocity which depends upon the initial imperfection. The causes for the difference are also investigated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A two-dimensional model of a magnetic flux tube confined in a gravitational stratified atmosphere is discussed. The magnetic field in the flux tube is assumed to be force-free. By using the approximation of large scale height, the problem of a free boundary with nonlinear conditions may be reduced to one involving a fixed boundary. The two-dimensional features are obtained by applying the perturbation method and adopting the Luest-Schlueter model as the basic state. The results show that the configuration of a flux tube confined in a gravitational stratified atmosphere is divergent, and the more twisted the magnetic field, the more divergent is the flux tube.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The magnetic flux tube concentrating strong magnetic field is the basic configuration of magneticfield in the solar atmosphere. In the present paper, the equilibrium of isolated magnetic flux tube inthe solar atmosphere is discussed. In the viewpoint of mathematics, the boundary condition is nonlinearand the position of boundary needs to be determined by the physical condition although the equation ofmagnetic potential is linear for the linear force-free field. Analytical solutions to the arches of bothuniform circular cross-section and non-uniform cross section have been obtained. The results show thatthe nonlinear problem may have or not have any solution according to different azimuthal components of the magnetic field; the number of solutions to the nonlinear problem is four at most, and two in some cases. In the present paper, the analytical solutions to the approximations of both fat and slender arches are given in detail, and the general features of magnetic arch structure are shown.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A mechanism for the reversed field pinch (RFP) dynamo is proposed, based on the nonlinear Hall effect of a saturated helical MHD instability. The sign and magnitude of the effect are shown to be those required for the RFP dynamo. Predictions of the model are in accord with RFP fluctuation measurements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nonlinear dynamic responses of the tensioned tether subjected to combined surge and heave motions of floating platform are investigated using 2-D nonlinear beam model. It is shown that if the transverse-axial coupling of nonlinear beam model and the combined surge-heave motions of platform are considered, the governing equation is not Mathieu equation any more, it becomes nonlinear Hill equation. The Hill stability chart is obtained by using the Hill's infinite determinant and harmonic balance method. A parameter M, which is the function of tether length, the surge and heave amplitude of platform, is defined. The Hill stability chart is obviously different from Mathieu stability chart which is the specific case as M=0. Some case studies are performed by employing linear and nonlinear beam model respectively. It can be found that the results differences between nonlinear and linear model are apparent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A Nonlinear Fluid Damping (NFD) in the form of the square-velocity is applied in the response analysis of Vortex-induced Vibrations (VIV). Its nonlinear hydrodynamic effects oil the coupled wake and structure oscillators are investigated. A comparison between the coupled systems with the linear and nonlinear fluid dampings and experiments shows that the NFD model can well describe response characteristics, such as the amplification of body displacement at lock-in and frequency lock-ill, both at high and low mass ratios. Particularly, the predicted peak amplitude of the body in the Griffin plot is ill good agreement with experimental data and empirical equation, indicating the significant effect of the NFD on the structure motion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dynamics of long slender cylinders undergoing vortex-induced vibrations (VIV) is studied in this work. Long slender cylinders such as risers or tension legs are widely used in the field of ocean engineering. When the sea current flows past a cylinder, it will be excited due to vortex shedding. A three-dimensional time domain model is formulated to describe the response of the cylinder, in which the in-line (IL) and cross-flow (CF) deflections are coupled. The wake dynamics, including in-line and cross-flow vibrations, is represented using a pair of non-linear oscillators distributed along the cylinder. The wake oscillators are coupled to the dynamics of the long cylinder with the acceleration coupling term. A non-linear fluid force model is accounted for to reflect the relative motion of cylinder to current. The model is validated against the published data from a tank experiment with the free span riser. The comparisons show that some aspects due to VIV of long flexible cylinders can be reproduced by the proposed model, such as vibrating frequency, dominant mode number, occurrence and transition of the standing or traveling waves. In the case study, the simulations show that the IL curvature is not smaller than CF curvature, which indicates that both IL and CF vibrations are important for the structural fatigue damage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation is concerned with the problem of determining the dynamic characteristics of complicated engineering systems and structures from the measurements made during dynamic tests or natural excitations. Particular attention is given to the identification and modeling of the behavior of structural dynamic systems in the nonlinear hysteretic response regime. Once a model for the system has been identified, it is intended to use this model to assess the condition of the system and to predict the response to future excitations.

A new identification methodology based upon a generalization of the method of modal identification for multi-degree-of-freedom dynaimcal systems subjected to base motion is developed. The situation considered herein is that in which only the base input and the response of a small number of degrees-of-freedom of the system are measured. In this method, called the generalized modal identification method, the response is separated into "modes" which are analogous to those of a linear system. Both parametric and nonparametric models can be employed to extract the unknown nature, hysteretic or nonhysteretic, of the generalized restoring force for each mode.

In this study, a simple four-term nonparametric model is used first to provide a nonhysteretic estimate of the nonlinear stiffness and energy dissipation behavior. To extract the hysteretic nature of nonlinear systems, a two-parameter distributed element model is then employed. This model exploits the results of the nonparametric identification as an initial estimate for the model parameters. This approach greatly improves the convergence of the subsequent optimization process.

The capability of the new method is verified using simulated response data from a three-degree-of-freedom system. The new method is also applied to the analysis of response data obtained from the U.S.-Japan cooperative pseudo-dynamic test of a full-scale six-story steel-frame structure.

The new system identification method described has been found to be both accurate and computationally efficient. It is believed that it will provide a useful tool for the analysis of structural response data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The first thesis topic is a perturbation method for resonantly coupled nonlinear oscillators. By successive near-identity transformations of the original equations, one obtains new equations with simple structure that describe the long time evolution of the motion. This technique is related to two-timing in that secular terms are suppressed in the transformation equations. The method has some important advantages. Appropriate time scalings are generated naturally by the method, and don't need to be guessed as in two-timing. Furthermore, by continuing the procedure to higher order, one extends (formally) the time scale of valid approximation. Examples illustrate these claims. Using this method, we investigate resonance in conservative, non-conservative and time dependent problems. Each example is chosen to highlight a certain aspect of the method.

The second thesis topic concerns the coupling of nonlinear chemical oscillators. The first problem is the propagation of chemical waves of an oscillating reaction in a diffusive medium. Using two-timing, we derive a nonlinear equation that determines how spatial variations in the phase of the oscillations evolves in time. This result is the key to understanding the propagation of chemical waves. In particular, we use it to account for certain experimental observations on the Belusov-Zhabotinskii reaction.

Next, we analyse the interaction between a pair of coupled chemical oscillators. This time, we derive an equation for the phase shift, which measures how much the oscillators are out of phase. This result is the key to understanding M. Marek's and I. Stuchl's results on coupled reactor systems. In particular, our model accounts for synchronization and its bifurcation into rhythm splitting.

Finally, we analyse large systems of coupled chemical oscillators. Using a continuum approximation, we demonstrate mechanisms that cause auto-synchronization in such systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two separate problems are discussed: axisymmetric equilibrium configurations of a circular membrane under pressure and subject to thrust along its edge, and the buckling of a circular cylindrical shell.

An ordinary differential equation governing the circular membrane is imbedded in a family of n-dimensional nonlinear equations. Phase plane methods are used to examine the number of solutions corresponding to a parameter which generalizes the thrust, as well as other parameters determining the shape of the nonlinearity and the undeformed shape of the membrane. It is found that in any number of dimensions there exists a value of the generalized thrust for which a countable infinity of solutions exist if some of the remaining parameters are made sufficiently large. Criteria describing the number of solutions in other cases are also given.

Donnell-type equations are used to model a circular cylindrical shell. The static problem of bifurcation of buckled modes from Poisson expansion is analyzed using an iteration scheme and pertubation methods. Analysis shows that although buckling loads are usually simple eigenvalues, they may have arbitrarily large but finite multiplicity when the ratio of the shell's length and circumference is rational. A numerical study of the critical buckling load for simple eigenvalues indicates that the number of waves along the axis of the deformed shell is roughly proportional to the length of the shell, suggesting the possibility of a "characteristic length." Further numerical work indicates that initial post-buckling curves are typically steep, although the load may increase or decrease. It is shown that either a sheet of solutions or two distinct branches bifurcate from a double eigenvalue. Furthermore, a shell may be subject to a uniform torque, even though one is not prescribed at the ends of the shell, through the interaction of two modes with the same number of circumferential waves. Finally, multiple time scale techniques are used to study the dynamic buckling of a rectangular plate as well as a circular cylindrical shell; transition to a new steady state amplitude determined by the nonlinearity is shown. The importance of damping in determining equilibrium configurations independent of initial conditions is illustrated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A model equation for water waves has been suggested by Whitham to study, qualitatively at least, the different kinds of breaking. This is an integro-differential equation which combines a typical nonlinear convection term with an integral for the dispersive effects and is of independent mathematical interest. For an approximate kernel of the form e^(-b|x|) it is shown first that solitary waves have a maximum height with sharp crests and secondly that waves which are sufficiently asymmetric break into "bores." The second part applies to a wide class of bounded kernels, but the kernel giving the correct dispersion effects of water waves has a square root singularity and the present argument does not go through. Nevertheless the possibility of the two kinds of breaking in such integro-differential equations is demonstrated.

Difficulties arise in finding variational principles for continuum mechanics problems in the Eulerian (field) description. The reason is found to be that continuum equations in the original field variables lack a mathematical "self-adjointness" property which is necessary for Euler equations. This is a feature of the Eulerian description and occurs in non-dissipative problems which have variational principles for their Lagrangian description. To overcome this difficulty a "potential representation" approach is used which consists of transforming to new (Eulerian) variables whose equations are self-adjoint. The transformations to the velocity potential or stream function in fluids or the scaler and vector potentials in electromagnetism often lead to variational principles in this way. As yet no general procedure is available for finding suitable transformations. Existing variational principles for the inviscid fluid equations in the Eulerian description are reviewed and some ideas on the form of the appropriate transformations and Lagrangians for fluid problems are obtained. These ideas are developed in a series of examples which include finding variational principles for Rossby waves and for the internal waves of a stratified fluid.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Part I a class of linear boundary value problems is considered which is a simple model of boundary layer theory. The effect of zeros and singularities of the coefficients of the equations at the point where the boundary layer occurs is considered. The usual boundary layer techniques are still applicable in some cases and are used to derive uniform asymptotic expansions. In other cases it is shown that the inner and outer expansions do not overlap due to the presence of a turning point outside the boundary layer. The region near the turning point is described by a two-variable expansion. In these cases a related initial value problem is solved and then used to show formally that for the boundary value problem either a solution exists, except for a discrete set of eigenvalues, whose asymptotic behaviour is found, or the solution is non-unique. A proof is given of the validity of the two-variable expansion; in a special case this proof also demonstrates the validity of the inner and outer expansions.

Nonlinear dispersive wave equations which are governed by variational principles are considered in Part II. It is shown that the averaged Lagrangian variational principle is in fact exact. This result is used to construct perturbation schemes to enable higher order terms in the equations for the slowly varying quantities to be calculated. A simple scheme applicable to linear or near-linear equations is first derived. The specific form of the first order correction terms is derived for several examples. The stability of constant solutions to these equations is considered and it is shown that the correction terms lead to the instability cut-off found by Benjamin. A general stability criterion is given which explicitly demonstrates the conditions under which this cut-off occurs. The corrected set of equations are nonlinear dispersive equations and their stationary solutions are investigated. A more sophisticated scheme is developed for fully nonlinear equations by using an extension of the Hamiltonian formalism recently introduced by Whitham. Finally the averaged Lagrangian technique is extended to treat slowly varying multiply-periodic solutions. The adiabatic invariants for a separable mechanical system are derived by this method.