972 resultados para TOLL-LIKE RECEPTORS
Resumo:
Preeclampsia (PE) is a pregnancy specific syndrome characterized by a systemic inflammatory response, with higher intensity than that observed in normal pregnancy. Cells of the immune system, such as monocytes and granulocytes are endogenously activated and secrete high levels of free radicals and inflammatory cytokines. The objective of this study was to assess the activation state of monocytes from pregnant women with preeclampsia by endogenous expression of TLR2 e TLR4 receptors and to correlate the expression of TLR2 and TLR4 on monocytes surface of pregnant women with PE with the production of tumor necrosis factor-alpha (TNF- and interleukin-10 (IL-10) by these cells stimulated or not with peptidoglycan (PG) and lipopolysaccharide (LPS), as agonists agents of TLR2 and TLR4, respectively. We evaluated 15 pregnant women with PE, 15 normotensive pregnant women (NT) and 15 non-pregnant (NP). Peripheral blood monocytes were incubates in the presence or absence of LPS or PG. The supernatant obtained after 18h of culture was aspirated and used for TNF- and IL-10 determination by enzyme immunoassay (ELISA). The endogenous expression of TLR2 and TLR4 receptors was evaluated by flow cytometry. Our results showed significant highly concentrations of TNF- and TLR4 expression in monocytes of preeclamptic women when compared with NT and NP. Normal pregnant women presented higher levels of IL-10 in comparison with PE and NP groups. TLR2 expression was similar in the three groups studied. Therefore, our study highlights the important role of TLR4 in PE and the consequent high production of TNF- by monocytes of these patients, as well as the potential mechanism involving low levels of IL-10 in the pathophysiology of the disease. These observations demonstrate the strong link between the pathology of PE and the immune system of these patients
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The disturbed cytokinechemokine network could play an important role in the onset of diseases with inflammatory processes such as chronic idiopathic urticaria (CIU). Our main objectives were to evaluate the relation between proinflammatory chemokine serum levels from CIU patients and their response to autologous skin test (ASST) and basophil histamine release (BHR). We also aimed to assess the chemokine secretion by peripheral blood mononuclear cells (PBMC) upon polyclonal stimulus and to evaluate chemokine CC ligand 2/C-X-C chemokine 8 (CCL2/CXCL8) and Toll-like receptor-4 (TLR-4) expression in monocytes. We observed significantly higher serum levels of the CXCL8, CXCL9, CXCL10 and CCL2 in CIU patients compared to the healthy group, regardless of the BHR or ASST response. The basal secretion of CCL2 by PBMC or induced by Staphylococcus aureus enterotoxin A (SEA) was higher in CIU patients than in the control group, as well as for CXCL8 and CCL5 secretions upon phytohaemagglutinin stimulation. Also, up-regulation of CCL2 and CXCL8 mRNA expression was found in monocytes of patients upon SEA stimulation. The findings showed a high responsiveness of monocytes through CCL2/CXCL8 expression, contributing to the creation of a proinflammatory environment in CIU.
Resumo:
Objective-The coagulation-inflammation cycle has been implicated as a critical component in malaria pathogenesis. Defibrotide (DF), a mixture of DNA aptamers, displays anticoagulant, anti-inflammatory, and endothelial cell (EC)-protective activities and has been successfully used to treat comatose children with veno-occlusive disease. DF was investigated here as a drug to treat cerebral malaria. Methods and Results-DF blocks tissue factor expression by ECs incubated with parasitized red blood cells and attenuates prothrombinase activity, platelet aggregation, and complement activation. In contrast, it does not affect nitric oxide bioavailability. We also demonstrated that Plasmodium falciparum glycosylphosphatidylinositol (Pf-GPI) induces tissue factor expression in ECs and cytokine production by dendritic cells. Notably, dendritic cells, known to modulate coagulation and inflammation systemically, were identified as a novel target for DF. Accordingly, DF inhibits Toll-like receptor ligand-dependent dendritic cells activation by a mechanism that is blocked by adenosine receptor antagonist (8-p-sulfophenyltheophylline) but not reproduced by synthetic poly-A, -C, -T, and -G. These results imply that aptameric sequences and adenosine receptor mediate dendritic cells responses to the drug. DF also prevents rosetting formation, red blood cells invasion by P. falciparum and abolishes oocysts development in Anopheles gambiae. In a murine model of cerebral malaria, DF affected parasitemia, decreased IFN-gamma levels, and ameliorated clinical score (day 5) with a trend for increased survival. Conclusion-Therapeutic use of DF in malaria is proposed. (Arterioscler Thromb Vasc Biol. 2012; 32:786-798.)
Resumo:
Ischemia/reperfusion injury (IRI) is a leading cause of acute renal failure. The definition of the molecular mechanisms involved in renal IRI and counter protection promoted by ischemic pre-conditioning (IPC) or Hemin treatment is an important milestone that needs to be accomplished in this research area. We examined, through an oligonucleotide microarray protocol, the renal differential transcriptome profiles of mice submitted to IRI, IPC and Hemin treatment. After identifying the profiles of differentially expressed genes observed for each comparison, we carried out functional enrichment analysis to reveal transcripts putatively involved in potential relevant biological processes and signaling pathways. The most relevant processes found in these comparisons were stress, apoptosis, cell differentiation, angiogenesis, focal adhesion, ECM-receptor interaction, ion transport, angiogenesis, mitosis and cell cycle, inflammatory response, olfactory transduction and regulation of actin cytoskeleton. In addition, the most important overrepresented pathways were MAPK, ErbB, JAK/STAT, Toll and Nod like receptors, Angiotensin II, Arachidonic acid metabolism, Wnt and coagulation cascade. Also, new insights were gained about the underlying protection mechanisms against renal IRI promoted by IPC and Hemin treatment. Venn diagram analysis allowed us to uncover common and exclusively differentially expressed genes between these two protective maneuvers, underscoring potential common and exclusive biological functions regulated in each case. In summary, IPC exclusively regulated the expression of genes belonging to stress, protein modification and apoptosis, highlighting the role of IPC in controlling exacerbated stress response. Treatment with the Hmox1 inducer Hemin, in turn, exclusively regulated the expression of genes associated with cell differentiation, metabolic pathways, cell cycle, mitosis, development, regulation of actin cytoskeleton and arachidonic acid metabolism, suggesting a pleiotropic effect for Hemin. These findings improve the biological understanding of how the kidney behaves after IRI. They also illustrate some possible underlying molecular mechanisms involved in kidney protection observed with IPC or Hemin treatment maneuvers.
Resumo:
Background: The activation of innate immune responses by Plasmodium vivax results in activation of effector cells and an excessive production of pro-inflammatory cytokines that may culminate in deleterious effects. Here, we examined the activation and function of neutrophils during acute episodes of malaria. Materials and Methods: Blood samples were collected from P. vivax-infected patients at admission (day 0) and 30-45 days after treatment with chloroquine and primaquine. Expression of activation markers and cytokine levels produced by highly purified monocytes and neutrophils were measured by the Cytometric Bead Assay. Phagocytic activity, superoxide production, chemotaxis and the presence of G protein-coupled receptor (GRK2) were also evaluated in neutrophils from malaria patients. Principal Findings: Both monocytes and neutrophils from P. vivax-infected patients were highly activated. While monocytes were found to be the main source of cytokines in response to TLR ligands, neutrophils showed enhanced phagocytic activity and superoxide production. Interestingly, neutrophils from the malaria patients expressed high levels of GRK2, low levels of CXCR2, and displayed impaired chemotaxis towards IL-8 (CXCL8). Conclusion: Activated neutrophils from malaria patients are a poor source of pro-inflammatory cytokines and display reduced chemotactic activity, suggesting a possible mechanism for an enhanced susceptibility to secondary bacterial infection during malaria.
Resumo:
Die Funktion von Rho GTPasen in den von Toll-Rezeptoren induzierten Signaltransduktionswegen Der Toll-ähnliche Rezeptor 2 (hTLR2) ist wie der TNFa-Rezeptor und das bei Drosophila identifizierte Imd-Protein in der Lage, über einen bisher ungeklärten Mechanismus, sowohl die Aktivierung von NF-kB als auch Apoptose zu induzieren. Im Rahmen dieser Arbeit konnte gezeigt werden, daß die aktive Form der GTPase Rho in beiden Signaltransduktionswegen eine entscheidende Kontrollfunktion übernimmt. So führt die Stimulierung von TLR2 zu einer Aktivierung von RhoA in epithelialen und monozytischen Zellinien. Die aktivierte GTPase rekrutiert die Kinase PKCz und induziert so die IkB-unabhängige Aktivierung des p65/Rel-Transkriptionskomplexes. Aktives RhoA kontrolliert darüberhinaus einen weiteren Signaltransduktionsweg, der die TLR2-abhängigen, früh-apoptptischen Membranveränderungen unter der Beteiligung der Kinasen ROCK und MLCK herbeiführt. Die Rho-abhängige Regulation dieser gegensätzlichen Signalantworten wird durch die direkte Interaktion mit spezifischen Downstreamtargets, die jeweils nur Bestandteil eines Signalweges sind, ermöglicht. Die GTPase Rho stellt somit ein Schlüsselelement in der von TLR2 induzierten primären Immunantwort dar.
Resumo:
Neutrophile Granulozyten spielen eine wichtige Rolle in der ersten Phase der Inflammation. Sie infiltrieren den Infektionsort um den eingedrungenen Erreger zu bekämpfen und Ihre Effektor Funktion auszuführen. Neben den Mustererkennenden Rezeptoren des angeborenen Immunsystems (pattern recognition receptors) werden weitere Rezeptoren auf der Oberfläche von neutrophilen Granulozyten exprimiert, welche zur Aktivierung der Zelle beitragen können. In dieser arbeit wurden der Herpes Virus Entry Mediator (HVEM) und Triggering Receptor expressed on Myeloid Cells-1 (TREM-1) auf neutrophilen untersucht. Für HVEM konnte eine synergistische Aktivierung von neutrophilen Granulozyten im Zusammenspiel mit Toll like Rezeptor (TLR) Liganden nachgewiesen werden. Für TREM-1 konnte ein Vorhandensein eines Liganden auch Thrombozyten beschrieben. Es wurden weiterhin Mechanismen untersucht und beschrieben, welche für die synergistische Aktivierung von neutrophilen Granulozyten verantwortlich sind, welche nach TREM-1 und TLR Stimulation erkennbar ist.
Resumo:
In the first part of my thesis I studied the mechanism of initiation of the innate response to HSV-1. Innate immune response is the first line of defense set up by the cell to counteract pathogens infection and it is elicited by the activation of a number of membrane or intracellular receptors and sensors, collectively indicated as PRRs, Patter Recognition Receptors. We reported that the HSV pathogen-associated molecular patterns (PAMP) that activate Toll-like receptor 2 (TLR2) and lead to the initiation of innate response are the virion glycoproteins gH/gL and gB, which constitute the conserved fusion core apparatus across the Herpesvirus. Specifically gH/gL is sufficient to initiate a signaling cascade which leads to NF-κB activation. Then, by gain and loss-of-function approaches, we found that αvβ3-integrin is a sensor of and plays a crucial role in the innate defense against HSV-1. We showed that αvβ3-integrin signals through a pathway that concurs with TLR2, affects activation/induction of interferons type 1, NF-κB, and a polarized set of cytokines and receptors. Thus, we demonstrated that gH/gL is sufficient to induce IFN1 and NF-κB via this pathway. From these data, we proposed that αvβ3-integrin is considered a class of non-TLR pattern recognition receptors. In the second part of my thesis I studied the capacity of human mesenchymal stromal cells isolated by fetal membranes (FM-hMSCs) to be used as carrier cells for the delivery of retargeted R-LM249 virus. The use of systemically administrated carrier cells to deliver oncolytic viruses to tumoral targets is a promising strategy in oncolytic virotherapy. We observed that FM-hMSCs can be infected by R-LM249 and we optimized the infection condition; then we demonstrate that stromal cells sustain the replication of retargeted R-LM249 and spread it to target tumoral cells. From these preliminary data FM-hMSCs resulted suitable to be used as carrier cells
Resumo:
The incorporation of modified nucleotides into ribonucleic acids (RNAs) is important for their structure and proper function. These modifications are inserted by distinct catalytic macromolecules one of them being Dnmt2. It methylates the Cytidine (C) at position 38 in tRNA to 5-methylcytidine (m5C). Dnmt2 has been a paradigm in this respect, because all of its nearest neighbors in evolution are DNA-cytosine C5-methyltransferases and methylate DNA, while its (own) DNA methyltransferase activity is the subject of controversial reports with rates varying between zero and very weak. This work determines whether the biochemical potential for DNA methylation is present in the enzyme. It was discovered that DNA fragments, when presented as covalent RNA:DNA hybrids in the structural context of a tRNA, can be more efficiently methylated than the corresponding natural tRNA substrate. Additional minor deviations from a native tRNA structure that were seen to be tolerated by Dnmt2 were used for a stepwise development of a composite system of guide RNAs that enable the enzyme to perform cytidine methylation on single stranded DNA in vitro. Furthermore, a proof-of-principle is presented for utilizing the S-adenosyl methionine-analog cofactor SeAdoYn with Dnmt2 to search for new possible substrates in a SELEX-like approach.rnIn innate immunity, nucleic acids can function as pathogen associated molecular patterns (PAMPs) recognized by pattern recognition receptors (PRRs). The modification pattern of RNA is the discriminating factor for toll-like receptor 7 (TLR7) to distinguish between self and non-self RNA of invading pathogens. It was found that a 2'-O-methylated guanosine (Gm) at position18, naturally occurring at this position in some tRNAs, antagonizes recognition by TLR7. In the second part of this work it is pointed out, that recognition extends to the next downstream nucleotide and the effectively recognized molecular detail is actually a methylated dinucleotide. The immune silencing effect of the ribose methylation is most pronounced if the dinucleotide motif is composed of purin nucleobases whereas pyrimidines diminish the effect. Similar results were obtained when the Gm modification was transposed into other tRNA domains. Point mutations abolishing base pairings important for a proper tertiary structure had no effect on the immune stimulatory potential of a Gm modified tRNA. Taken together these results suggest a processive type of RNA inspection by TLR7.rn
Resumo:
Eosinophil extracellular traps (EETs) are part of the innate immune response and are seen in multiple infectious, allergic, and autoimmune eosinophilic diseases. EETs are composed of a meshwork of DNA fibers and eosinophil granule proteins, such as major basic protein (MBP) and eosinophil cationic protein (ECP). Interestingly, the DNA within the EETs appears to have its origin in the mitochondria of eosinophils, which had released most their mitochondrial DNA, but were still viable, exhibiting no evidence of a reduced life span. Multiple eosinophil activation mechanisms are represented, whereby toll-like, cytokine, chemokine, and adhesion receptors can all initiate transmembrane signal transduction processes leading to the formation of EETs. One of the key signaling events required for DNA release is the activation of the NADPH oxidase. Here, we review recent progress made in the understanding the molecular mechanisms involved in DNA and granule protein release, discuss the presence of EETs in disease, speculate on their potential role(s) in pathogenesis, and compare available data on other DNA-releasing cells, particularly neutrophils.
Resumo:
The interaction of bovine cells with lipopolysaccharide (LPS) was explored using human embryo kidney (HEK) 293 cell line stably transduced with bovine toll-like receptor-4 (TLR4) alone or in combination with bovine MD-2. These lines and mock-transduced HEK293 cells were tested by flow cytometry for LPS-fluorescein isothiocyanate (LPS-FITC) binding, nuclear factor kappa B (NFkappaB) activation, interleukin-8 (IL-8) production and interferon-beta mRNA expression/interferon (IFN) type I production. Whereas bovine TLR4 was sufficient to promote binding of high concentrations of LPS-FITC, both bovine TLR4 and MD-2 were required for activation by LPS, as assessed by NFkappaB activation and IL-8 production. Induction of IFN bioactivity was not observed in doubly transduced HEK293 cells, and no evidence for IFN-beta mRNA induction in response to LPS was obtained, although cells responded by IFN-beta mRNA expression to stimulation by Sendai virus and poly-inosinic acid-poly-cytidylic acid (poly(I:C)). Cells stably transduced with both bovine TLR4 and bovine MD-2 responded to LPS by IL-8 production, in decreasing order, in the presence of fetal bovine serum (FCS), of human serum, and of human serum albumin (HSA). The reduced activity in the presence of HSA could be restored by the addition of soluble CD14 (sCD14) but not of LPS binding protein (LBP). This is in contrast to macrophages which show a superior response to LPS in the presence of HSA when compared with macrophages stimulated by LPS in the presence of FCS. This suggests that macrophages but not HEK293 cells express factors rendering LPS stimulation serum-independent. Stably double-transduced cells reacted, in decreasing order, to LPS from Rhodobacter sphaeroides, to LPS from Escherichia coli, to synthetic lipd-IVa (compound 406), to diphosphoryl-lipid-A (S. minnesota) and to monophosphoryl-lipid-A (S. minnesota). They failed to react to the murine MD-2/TLR4 ligand taxol. This resembles the reactivity of bovine macrophages with regard to sensitivity (ED(50)) and order of potency but is distinct from the reactivity pattern of other species. This formally establishes that in order to react to LPS, cattle cells require serum factors (e.g. sCD14) and cell-expressed factors such as MD-2 and TLR4. The cell lines described are the first of a series expressing defined pattern recognition receptors (PRR) of bovine origin. They will be useful in the study of the interaction of the bovine TLR4-MD-2 complex and Gram-negative bovine pathogens, e.g. the agents causing Gram-negative bovine mastitis.
Resumo:
Interleukin-8 (IL-8) activates neutrophils via the chemokine receptors CXCR1 and CXCR2. However, the airways of individuals with cystic fibrosis are frequently colonized by bacterial pathogens, despite the presence of large numbers of neutrophils and IL-8. Here we show that IL-8 promotes bacterial killing by neutrophils through CXCR1 but not CXCR2. Unopposed proteolytic activity in the airways of individuals with cystic fibrosis cleaved CXCR1 on neutrophils and disabled their bacterial-killing capacity. These effects were protease concentration-dependent and also occurred to a lesser extent in individuals with chronic obstructive pulmonary disease. Receptor cleavage induced the release of glycosylated CXCR1 fragments that were capable of stimulating IL-8 production in bronchial epithelial cells via Toll-like receptor 2. In vivo inhibition of proteases by inhalation of alpha1-antitrypsin restored CXCR1 expression and improved bacterial killing in individuals with cystic fibrosis. The cleavage of CXCR1, the functional consequences of its cleavage, and the identification of soluble CXCR1 fragments that behave as bioactive components represent a new pathophysiologic mechanism in cystic fibrosis and other chronic lung diseases.
Resumo:
Salmonella enterica subspecies 1 serovar Typhimurium is a common cause of gastrointestinal infections. The host's innate immune system and a complex set of Salmonella virulence factors are thought to contribute to enteric disease. The serovar Typhimurium virulence factors have been studied extensively by using tissue culture assays, and bovine infection models have been used to verify the role of these factors in enterocolitis. Streptomycin-pretreated mice provide an alternative animal model to study enteric salmonellosis. In this model, the Salmonella pathogenicity island 1 type III secretion system has a key virulence function. Nothing is known about the role of other virulence factors. We investigated the role of flagella in murine serovar Typhimurium colitis. A nonflagellated serovar Typhimurium mutant (fliGHI) efficiently colonized the intestine but caused little colitis during the early phase of infection (10 and 24 h postinfection). In competition assays with differentially labeled strains, the fliGHI mutant had a reduced capacity to get near the intestinal epithelium, as determined by fluorescence microscopy. A flagellated but nonchemotactic cheY mutant had the same virulence defects as the fliGHI mutant for causing colitis. In competitive infections, both mutants colonized the intestine of streptomycin-pretreated mice by day 1 postinfection but were outcompeted by the wild-type strain by day 3 postinfection. Together, these data demonstrate that flagella are required for efficient colonization and induction of colitis in streptomycin-pretreated mice. This effect is mostly attributable to chemotaxis. Recognition of flagellar subunits (i.e., flagellin) by innate immune receptors (i.e., Toll-like receptor 5) may be less important.
Resumo:
Cytochromes P450 4Fs (CYP4F) are a subfamily of enzymes involved in arachidonic acid metabolism with highest catalytic activity towards leukotriene B 4 (LTB4), a potent chemoattractant involved in prompting inflammation. CYP4F-mediated metabolism of LTB4 leads to inactive ω-hydroxy products incapable of initiating chemotaxis and the inflammatory stimuli that result in the influx of inflammatory cells. Our hypothesis is based on the catalytic ability of CYP4Fs to inactivate pro-inflammatory LTB4 which assures these enzymes a pivotal role in the process of inflammation resolution. ^ To test this hypothesis and evaluate the changes in CYP4F expression under complex inflammatory conditions, we designed two mouse models, one challenged with lipopolysaccharide (LPS) as a sterile model of sepsis and the other challenged with a systemic live bacterial infection of Citrobacter rodentium, an equivalent of the human enterobacterium E. coli pathogen invasion. Based on the evidence that Peroxisome Proliferator Activated Receptors (PPARs) play an active role in inflammation regulation, we also examined PPARs as a regulation mechanism in CYP4F expression during inflammation using PPARα knockout mice under LPS challenge. Using the Citrobacter rodentium model of inflammation, we studied CYP4F levels to compare them to those in LPS challenged animals. LPS-triggered inflammation signal is mediated by Toll-like 4 (TLR4) receptors which specifically respond to LPS in association with several other proteins. Using TLR4 knockout mice challenged with Citrobacter rodentium we addressed possible mediation of CYP4F expression regulation via these receptors. ^ Our results show isoform- and tissue-specific CYP4F expression in all the tissues examined. The Citrobacter rodentium inflammation model revealed significant reduction in liver expression of CYP4F14 and CYP4F15 and an up-regulation of gene expression of CYP4F16 and CYP4F18. TLR4 knockout studies showed that the decrease in hepatic CYP4F15 expression is TLR4-dependent. CYP4F expression in kidney shows down-regulation of CYP4F14 and CYP4F15 and up-regulation of CYP4F18 expression. In the LPS inflammation model, we showed similar patterns of CYP4F changes as in Citrobacter rodentium -infected mice. The renal profile of CYP4Fs in PPARα knockout mice with LPS challenge showed CYP4F15 down-regulation to be PPARα dependent. Our study confirmed tissue- and isoform-specific regulation of CYP4F isoforms in the course of inflammation. ^