882 resultados para TIME-VARIATION
Resumo:
Day/night variations in the size distribution of the particulate matter >0.15 mm (PM) were studied in May 1995 during the DYNAPROC time-series cruise in the northwestern Mediterranean Sea. Data on vertical distributions of PM (>0.15 mm) and zooplankton were collected with the Underwater Video Profiler (UVP). The comparisons of the UVP data with plankton net data and POC data from water bottles indicated that more than 97% of the particles detected by the UVP were non-living particles (0.15 mm) and that the PM contributed 4-34% of the total dry weight measured on GF/F filters. Comparison of seven pairs of day and night vertical profiles performed during the cruise showed that in the upper 800 m, the mean size and the volume of particles was higher at night than during the day. During the night, the integrated volume of the PM increased on average by 32±20%. This increase corresponded to a shift of smaller size classes (<0.5 mm) towards the larger ones (>0.5 mm). During the day, the pattern was reversed, and the quantity of PM >0.5 mm decreased. During the study period, the standing stock of PM (60-800 m) decreased from 7.5 to less than 2 g m?2 but the diel variations persisted, except for two short periods in the superficial layer following a wind event. The cyclic feeding activity induced by the diel vertical migration of zooplankton could be the best candidate to explain the observed diel fluctuations in the size classes of PM in the water column. However, our results also suggest that in the upper layer additional driving forces such as the increase of the level of turbulence after a wind event or the modification of the zoo- and phytoplankton community can influence the PM temporal evolution.
Resumo:
From November 2004 to December 2007, size-segregated aerosol samples were collected all-year-round at Dome C (East Antarctica) by using PM10 and PM2.5 samplers, and multi-stage impactors. The data set obtained from the chemical analysis provided the longest and the most time-resolved record of sea spray aerosol (sea salt Na+) in inner Antarctica. Sea spray showed a sharp seasonal pattern. The highest values measured in winter (Apr-Nov) were about ten times larger than in summer (Dec-Mar). For the first time, a size-distribution seasonal pattern was also shown: in winter, sea spray particles are mainly submicrometric, while their summer size-mode is around 1-2 µm. Meteorological analysis on a synoptic scale allowed the definition of atmospheric conditions leading sea spray to Dome C. An extreme-value approach along with specific environmental based criteria was taken to yield stronger fingerprints linking atmospheric circulation (means and anomalies) to extreme sea spray events. Air mass back-trajectory analyses for some high sea spray events allowed the identification of two major air mass pathways, reflecting different size distributions: micrometric fractions for transport from the closer Indian-Pacific sector, and sub-micrometric particles for longer trajectories over the Antarctic Plateau. The seasonal pattern of the SO4**2- /Na+ ratio enabled the identification of few events depleted in sulphate, with respect to the seawater composition. By using methanesulphonic acid (MSA) profile to evaluate the biogenic SO4**2- contribution, a more reliable sea salt sulphate was calculated. In this way, few events (mainly in April and in September) were identified originating probably from the "frost flower" source. A comparison with daily-collected superficial snow samples revealed that there is a temporal shift between aerosol and snow sea spray trends. This feature could imply a more complex deposition processes of sea spray, involving significant contribution of wet and diamond dust deposition, but further work has to be carried out to rule out the effect of wind re-distribution and to have more statistic significance.
Resumo:
The iterative evolutionary radiation of planktic foraminifers is a well-documented macroevolutionary process. Here we document the accompanying size changes in entire planktic foraminiferal assemblages for the past 70 My and their relationship to paleoenvironmental changes. After the size decrease at the Cretaceous/Paleogene (K/P) boundary, high latitude assemblages remained consistently small. Size evolution in low latitudes can be divided into three major phases: the first is characterized by dwarfs (65-42 Ma), the second shows moderate size fluctuations (42-14 Ma), and in the third phase, planktic foraminifers have grown to the unprecedented sizes observed today. Our analyses of size variability with paleoproxy records indicate that periods of size increase coincided with phases of global cooling (Eocene and Neogene). These periods were characterized by enhanced latitudinal and vertical temperature gradients in the oceans and high diversity (polytaxy). In the Paleocene and during the Oligocene, the observed (minor) size changes of the largely low-diversity (oligotaxic) assemblages seem to correlate with productivity changes. However, polytaxy per se was not responsible for larger test sizes.
Resumo:
We present measurements of the maximum diameter of the planktonic foraminifer Neogloboquadrina pachyderma sin. from six sediment cores (Ocean Drilling Program sites 643, 644, 907, 909, 985 and 987) from the Norwegian-Greenland Sea. Our data show a distinct net increase in mean shell size of N. pachyderma sin. at all sites during the last 1.3 Ma, with largest shell sizes reached after 0.4 Ma. External factors such as glacial-interglacial variability and carbonate dissolution alone cannot account for the observed variation in mean shell size of N. pachyderma sin. We consider the observed shell size increase to mirror an evolutionary trend towards better adaptation of N. pachyderma sin. to the cold water environment after 1.1-1.0 Ma. Probably, the Mid Pleistocene climate shift and the associated change of amplitude and frequency of glacial-interglacial fluctuations have triggered the evolution of this planktonic foraminifer. Oxygen and carbon stable isotope analyses of different shell size classes indicate that the observed shell size increase could not be explained by the functional concept that larger shells promote increasing sinking velocities during gametogenesis. For paleoceanographic reconstructions, the evolutionary adaptation of Neogloboquadrina pachyderma sin. to the cold water habitat has significant implications. Carbonate sedimentation in highest latitudes is highly dependent on the presence of this species. In the Norwegian-Greenland Sea, carbonate-poor intervals before 1.1 Ma are, therefore, not necessarily related to severe glacial conditions. They are probably attributed to the absence of this not yet polar-adapted species. Further, transfer function and modern analog techniques used for the reconstruction of surface water conditions in high latitudes could, therefore, contain a large range of errors if they were applied to samples older than 1.1-1.0 Myrs.
Resumo:
We report well-dated Late Cretaceous and Early Tertiary precessional climatic cycles, recorded by rhythmic carbonate maxima and minima in South Atlantic deep sea sites. Spectral analyses of digitized sediment color, a suitable carbonate proxy, show prominent regularities in the spacing marl-carbonate beds. Magnetostratigraphic dating over a number of magnetic chrons constrains the duration of the cycles, which can be detected over at least 20 Myr of sedimentation at 7 coring locations. Their mean absolute period of 23.5 +/- 4.4kyr agrees closely with the predicted late Cretaceous precessional period of 20.8 kyr. Because they can be matched to a physical forcing mechanism with a known repeat time, the cycles offer a new high-resolution tool to measure rates of climate change before and after the Cretaceous-Tertiary (K/T) boundary. From counts of carbonate cycles, we derive the position of the K/T boundary within C29R at 350 kyr after the base of the reversal. The constancy of cycle thickness (linearly related to sedimentation rate) and amplitude up to the "boundary clay" does not give evidence for climate instability preceding the boundary. Orbital chronometry records a step-function decrease in sediment accumulation rate at the Cretaceous-Tertiary boundary that is consistent with a geologically instantaneous event.
Resumo:
Predicted future CO2 levels can affect reproduction, growth, and behaviour of many marine organisms. However, the capacity of species to adapt to predicted changes in ocean chemistry is largely unknown. We used a unique field-based experiment to test for differential survival associated with variation in CO2 tolerance in a wild population of coral-reef fishes. Juvenile damselfish exhibited variation in their response to elevated (700 µatm) CO2 when tested in the laboratory and this influenced their behaviour and risk of mortality in the wild. Individuals that were sensitive to elevated CO2 were more active and move further from shelter in natural coral reef habitat and, as a result, mortality from predation was significantly higher compared with individuals from the same treatment that were tolerant of elevated CO2. If individual variation in CO2 tolerance is heritable, this selection of phenotypes tolerant to elevated CO2 could potentially help mitigate the effects of ocean acidification.
Resumo:
Deep-sea species are generally thought to be less tolerant of environmental variation than shallow-living species due to the relatively stable conditions in deep waters for most parameters (e.g. temperature, salinity, oxygen, and pH). To explore the potential for deep-sea hermit crabs (Pagurus tanneri) to acclimate to future ocean acidification, we compared their olfactory and metabolic performance under ambient (pH 7.6) and expected future (pH 7.1) conditions. After exposure to reduced pH waters, metabolic rates of hermit crabs increased transiently and olfactory behaviour was impaired, including antennular flicking and prey detection. Crabs exposed to low pH treatments exhibited higher individual variation for both the speed of antennular flicking and speed of prey detection, than observed in the control pH treatment, suggesting that phenotypic diversity could promote adaptation to future ocean acidification.