916 resultados para TARGET
Resumo:
Promoter hypermethylation is central in deregulating gene expression in cancer. Identification of novel methylation targets in specific cancers provides a basis for their use as biomarkers of disease occurrence and progression. We developed an in silico strategy to globally identify potential targets of promoter hypermethylation in prostate cancer by screening for 5' CpG islands in 631 genes that were reported as downregulated in prostate cancer. A virtual archive of 338 potential targets of methylation was produced. One candidate, IGFBP3, was selected for investigation, along with glutathione-S-transferase pi (GSTP1), a well-known methylation target in prostate cancer. Methylation of IGFBP3 was detected by quantitative methylation-specific PCR in 49/79 primary prostate adenocarcinoma and 7/14 adjacent preinvasive high-grade prostatic intraepithelial neoplasia, but in only 5/37 benign prostatic hyperplasia (P < 0.0001) and in 0/39 histologically normal adjacent prostate tissue, which implies that methylation of IGFBP3 may be involved in the early stages of prostate cancer development. Hypermethylation of IGFBP3 was only detected in samples that also demonstrated methylation of GSTP1 and was also correlated with Gleason score > or =7 (P=0.01), indicating that it has potential as a prognostic marker. In addition, pharmacological demethylation induced strong expression of IGFBP3 in LNCaP prostate cancer cells. Our concept of a methylation candidate gene bank was successful in identifying a novel target of frequent hypermethylation in early-stage prostate cancer. Evaluation of further relevant genes could contribute towards a methylation signature of this disease.
Resumo:
In the present study, native Spanish speakers were taught a small English vocabulary (Spanish-to-English intraverbals). Four different training conditions were created by combining textual and echoic prompts with written and vocal target responses. The efficiency of each training condition was examined by analysing emergent relations (i.e., tacts) and the total number of sessions required to reach mastery under each training condition. All combinations of prompt-response modalities generated increases in correct responding on tests for emergent relations but when target responses were written, mastery criterion was reached faster. Results are discussed in terms of efficiency for emergent relations and recommendations for future directions are provided.
Resumo:
This work aimed to evaluate whether ETS transcription factors frequently involved in rearrangements in prostate carcinomas (PCa), namely ERG and ETV1, regulate specific or shared target genes. We performed differential expression analysis on nine normal prostate tissues and 50 PCa enriched for different ETS rearrangements using exon-level expression microarrays, followed by in vitro validation using cell line models. We found specific deregulation of 57 genes in ERG-positive PCa and 15 genes in ETV1-positive PCa, whereas deregulation of 27 genes was shared in both tumor subtypes. We further showed that the expression of seven tumor-associated ERG target genes (PLA1A, CACNA1D, ATP8A2, HLA-DMB, PDE3B, TDRD1, and TMBIM1) and two tumor-associated ETV1 target genes (FKBP10 and GLYATL2) was significantly affected by specific ETS silencing in VCaP and LNCaP cell line models, respectively, whereas the expression of three candidate ERG and ETV1 shared targets (GRPR, KCNH8, and TMEM45B) was significantly affected by silencing of either ETS. Interestingly, we demonstrate that the expression of TDRD1, the topmost overexpressed gene of our list of ERG-specific candidate targets, is inversely correlated with the methylation levels of a CpG island found at -66 bp of the transcription start site in PCa and that TDRD1 expression is regulated by direct binding of ERG to the CpG island in VCaP cells. We conclude that ETS transcription factors regulate specific and shared target genes and that TDRD1, FKBP10, and GRPR are promising therapeutic targets and can serve as diagnostic markers for molecular subtypes of PCa harboring specific fusion gene rearrangements.
Resumo:
HDL has long been known for its role in reverse cholesterol transport, thought in part to explain the well-recognized links between low levels of HDL-C and cardiovascular disease. The past decade has seen increasing evidence from epidemiological, basic science and early human intervention studies that HDL biology is more complex and may influence the onset and progression of type 2 diabetes. Research has identified multiple potential pathways by which higher HDL particle concentrations or functional improvements may ameliorate the development and progression of the disease. These include promotion of insulin secretion and pancreatic islet beta-cell survival, promotion of peripheral glucose uptake, and suppression of inflammation. The relationships between HDL-C levels, commonly used in clinical practice, and HDL particle number, size and various HDL functions is complex, and is intimately linked with triglyceride metabolism. The complexity of these relationships is amplified in diabetes, which negatively impacts multiple aspects of lipoprotein biology. This article reviews the rationale for, and potential of, HDL-based anti-diabetic pharmacotherapy, with an emphasis on the particular challenges posed by diabetes-related HDL dysfunction, and on the difficulties of selecting appropriate targets and HDL-related biomarkers for research and for clinical practice. We discuss aspects of HDL metabolism that are known to be altered in type 2 diabetes, potentially useful measures of HDL-targeted therapy in diabetes, and review early intervention studies in humans. These areas provide a firm foundation for further research and knowledge expansion in this intriguing area of human health and disease.
Resumo:
For over 40 years, the fluoropyrimidine 5-fluorouracil (5-FU) has remained the central agent in therapeutic regimens employed in the treatment of colorectal cancer and is frequently combined with the DNA-damaging agents oxaliplatin and irinotecan, increasing response rates and improving overall survival. However, many patients will derive little or no benefit from treatment, highlighting the need to identify novel therapeutic targets to improve the efficacy of current 5-FU-based chemotherapeutic strategies. dUTP nucleotidohydrolase (dUTPase) catalyzes the hydrolysis of dUTP to dUMP and PPi, providing substrate for thymidylate synthase (TS) and DNA synthesis and repair. Although dUTP is a normal intermediate in DNA synthesis, its accumulation and misincorporation into DNA as uracil is lethal. Importantly, uracil misincorporation represents an important mechanism of cytotoxicity induced by the TS-targeted class of chemotherapeutic agents including 5-FU. A growing body of evidence suggests that dUTPase is an important mediator of response to TS-targeted agents. In this article, we present further evidence showing that elevated expression of dUTPase can protect breast cancer cells from the expansion of the intracellular uracil pool, translating to reduced growth inhibition following treatment with 5-FU. We therefore report the implementation of in silico drug development techniques to identify and develop small-molecule inhibitors of dUTPase. As 5-FU and the oral 5-FU prodrug capecitabine remain central agents in the treatment of a variety of malignancies, the clinical utility of a small-molecule inhibitor to dUTPase represents a viable strategy to improve the clinical efficacy of these mainstay chemotherapeutic agents.
Resumo:
Demersal fisheries targeting a few high-value species often catch and discard other "non-target" species. It is difficult to quantify the impact of this incidental mortality when population biomass of a non-target species is unknown. We calculate biomass for 14 demersal fish species in ICES Area VIIg (Celtic Sea) by applying species-and length-based catchability corrections to catch records from the Irish Groundfish Survey (IGFS). We then combine these biomass estimates with records of commercial discards (and landings for marketable non-target species) to calculate annual harvesting rates (HR) for each study species. Uncertainty is incorporated into estimates of both biomass andHR. Our survey-based HR estimates for cod and whiting compared well with HR-converted fishing mortality (F) estimates from analytical assessments for these two stocks. Of the non-target species tested, red gurnard (Chelidonichthys cuculus) recorded some annual HRs greater than those for cod or whiting; challenging "Pope's postulate" that F on non-target stocks in an assemblage will not exceed that on target stocks. We relate HR for each species to two corresponding maximum sustainable yield (MSY) reference levels; six non-target species (including three ray species) show annual HRs >= HRMSY. This result suggests that it may not be possible to conserve vulnerable non-target species when F is coupled to that of target species. Based on biomass, HR, and HRMSY, we estimate "total allowable catch" for each non-target species.
Resumo:
Background
The use of multiple medicines (polypharmacy) is increasingly common in older people. Ensuring that patients receive the most appropriate combinations of medications (appropriate polypharmacy) is a significant challenge. The quality of evidence to support the effectiveness of interventions to improve appropriate polypharmacy is low. Systematic identification of mediators of behaviour change, using the Theoretical Domains Framework (TDF), provides a theoretically robust evidence base to inform intervention design. This study aimed to (1) identify key theoretical domains that were perceived to influence the prescribing and dispensing of appropriate polypharmacy to older patients by general practitioners (GPs) and community pharmacists, and (2) map domains to associated behaviour change techniques (BCTs) to include as components of an intervention to improve appropriate polypharmacy in older people in primary care.
Methods
Semi-structured interviews were conducted with members of each healthcare professional (HCP) group using tailored topic guides based on TDF version 1 (12 domains). Questions covering each domain explored HCPs’ perceptions of barriers and facilitators to ensuring the prescribing and dispensing of appropriate polypharmacy to older people. Interviews were audio-recorded and transcribed verbatim. Data analysis involved the framework method and content analysis. Key domains were identified and mapped to BCTs based on established methods and discussion within the research team.
Results
Thirty HCPs were interviewed (15 GPs, 15 pharmacists). Eight key domains were identified, perceived to influence prescribing and dispensing of appropriate polypharmacy: ‘Skills’, ‘Beliefs about capabilities’, ‘Beliefs about consequences’, ‘Environmental context and resources’, ‘Memory, attention and decision processes’, ‘Social/professional role and identity’, ‘Social influences’ and ‘Behavioural regulation’. Following mapping, four BCTs were selected for inclusion in an intervention for GPs or pharmacists: ‘Action planning’, ‘Prompts/cues’, ‘Modelling or demonstrating of behaviour’ and ‘Salience of consequences’. An additional BCT (‘Social support or encouragement’) was selected for inclusion in a community pharmacy-based intervention in order to address barriers relating to interprofessional working that were encountered by pharmacists.
Conclusions
Selected BCTs will be operationalised in a theory-based intervention to improve appropriate polypharmacy for older people, to be delivered in GP practice and community pharmacy settings. Future research will involve development and feasibility testing of this intervention.
Resumo:
BACKGROUND: The androgen receptor (AR) is a major drug target in prostate cancer (PCa). We profiled the AR-regulated kinome to identify clinically relevant and druggable effectors of AR signaling.
METHODS: Using genome-wide approaches, we interrogated all AR regulated kinases. Among these, choline kinase alpha (CHKA) expression was evaluated in benign (n = 195), prostatic intraepithelial neoplasia (PIN) (n = 153) and prostate cancer (PCa) lesions (n = 359). We interrogated how CHKA regulates AR signaling using biochemical assays and investigated androgen regulation of CHKA expression in men with PCa, both untreated (n = 20) and treated with an androgen biosynthesis inhibitor degarelix (n = 27). We studied the effect of CHKA inhibition on the PCa transcriptome using RNA sequencing and tested the effect of CHKA inhibition on cell growth, clonogenic survival and invasion. Tumor xenografts (n = 6 per group) were generated in mice using genetically engineered prostate cancer cells with inducible CHKA knockdown. Data were analyzed with χ(2) tests, Cox regression analysis, and Kaplan-Meier methods. All statistical tests were two-sided.
RESULTS: CHKA expression was shown to be androgen regulated in cell lines, xenografts, and human tissue (log fold change from 6.75 to 6.59, P = .002) and was positively associated with tumor stage. CHKA binds directly to the ligand-binding domain (LBD) of AR, enhancing its stability. As such, CHKA is the first kinase identified as an AR chaperone. Inhibition of CHKA repressed the AR transcriptional program including pathways enriched for regulation of protein folding, decreased AR protein levels, and inhibited the growth of PCa cell lines, human PCa explants, and tumor xenografts.
CONCLUSIONS: CHKA can act as an AR chaperone, providing, to our knowledge, the first evidence for kinases as molecular chaperones, making CHKA both a marker of tumor progression and a potential therapeutic target for PCa.
Resumo:
Radiation resistance and toxicity in normal tissues are limiting factors in the efficacy of radiotherapy. Gold nanoparticles (GNPs) have been shown to be effective at enhancing radiation-induced cell death, and were initially proposed to physically enhance the radiation dose deposited. However, biological responses of GNP radiosensitization based on physical assumptions alone are not predictive of radiosensitisation and therefore there is a fundamental research need to determine biological mechanisms of response to GNPs alone and in combination with ionising radiation. This study aimed to identify novel mechanisms of cancer cell radiosensitisation through the use of GNPs, focusing on their ability to induce cellular oxidative stress and disrupt mitochondrial function. Using N-acetyl-cysteine, we found mitochondrial oxidation to be a key event prior to radiation for the radiosensitisation of cancer cells and suggests the overall cellular effects of GNP radiosensitisation are a result of their interaction with protein disulphide isomerase (PDI). This investigation identifies PDI and mitochondrial oxidation as novel targets for radiosensitisation.
Resumo:
Fast electron energy spectra have been measured for a range of intensities between 1018 Wcm−2 and 1021 Wcm−2 and for different target materials using electron spectrometers. Several experimental campaigns were conducted on peta watt laser facilities at the Rutherford Appleton Laboratory and Osaka University. In these experimental campaigns, the pulse duration was varied from 0.5 ps to 5 ps. The laser incident angle was also changed from normal incidence to 40° in p-polarized. The results show a reduction from the ponderomotive scaling on fast electrons over 1020 Wcm−2.
Resumo:
The pinewood nematode (PWN), Bursaphelenchus xylophilus , is a major pathogen of conifers, which impacts on forest health, natural ecosystem stability and international trade. As a consequence, it has been listed as a quarantine organism in Europe. A real-time PCR approach based on TaqMan chemistry was developed to detect this organism. Specific probe and primers were designed based on the sequence of the Msp I satellite DNA family previously characterized in the genome of the nematode. The method proved to be specific in tests with target DNA from PWN isolates from worldwide origin. From a practical point of view, detection limit was 1 pg of target DNA or one individual nematode. In addition, PWN genomic DNA or single individuals were positively detected in mixed samples in which B. xylophilius was associated with the closely related non-pathogenic species B. mucronatus , up to the limit of 0.01% or 1% of the mixture, respectively. The real-time PCR assay was also used in conjunction with a simple DNA extraction method to detect PWN directly in artificially infested wood samples. These results demonstrate the potential of this assay to provide rapid, accurate and sensitive molecular identification of the PWN in relation to pest risk assessment in the field and quarantine regulation.
Resumo:
A utilização insustentável de pesticidas, especialmente em zonas com elevado valor ecológico constitui uma ameaça à integridade dos ecossistemas. Sendo um problema à escala mundial, e também no contexto nacional, o presente trabalho pretende ser um contributo para a avaliação dos efeitos de pesticidas em organismos não alvo terrestres e, principalmente, aquáticos, em contextos de progressiva relevância ecológica. Neste sentido, o estudo foi direccionado para áreas (A1 e A2) integradas numa zona agrícola extensa em Portugal, utilizada para a produção de milho e, principalmente, de arroz (Baixo Mondego), a qual sustenta uma elevada biodiversidade. O estudo teve início na área A1, onde a monitorização físico-química e os ensaios com amostras naturais (ensaios WET - whole effluent tests) provenientes desta área evidenciaram que, apesar da ausência de pesticidas, as amostras de água colhidas no canal que atravessava os arrozais foram as mais nocivas para o crescimento de Pseudokirchneriella subcapitata e Chlorella vulgaris. Uma vez que outras fontes de contaminação (produção de gado) actuavam em A1, o estudo prosseguiu apenas na área A2. Assim, em A2, começou-se por determinar a toxicidade individual e da mistura de dois herbicidas formulados aplicados nos campos de arroz (Viper®) e milho (Mikado®) em condições laboratoriais. Viper® foi o herbicida mais tóxico, tanto para o crescimento de P. subcapitata e C. vulgaris, como para a sobrevivência, reprodução e crescimento de Daphnia longispina e Daphnia magna. Adicionalmente, estimou-se que a mistura Viper®/Mikado® induz efeitos antagonistas no crescimento de P. subcapitata e efeitos sinérgicos no crescimento de C. vulgaris e na sobrevivência dos dafnídeos. A avaliação da toxicidade destes herbicidas formulados e seus ingredientes activos no comportamento de minhocas terrestres (Eisenia andrei), usando solos naturais, demonstrou que Viper® e penoxsulam causaram uma % de evitamento superior nos organismos expostos. Contudo, o risco para E. andrei será à partida reduzido se as taxas de aplicação dos herbicidas forem respeitadas. Ensaios WET foram novamente usados para testar amostras naturais da área A2. Verificou-se que a qualidade do sistema aquático e do arrozal diminuiu durante a estação agrícola, em paralelo com a presença de nutrientes e pesticidas. O crescimento algal foi inibido, apesar dos parâmetros de história de vida dos dafnídeos terem sido estimulados. O resultado desta avaliação subestimou, em certos casos, os impactos reais causados pela aplicação de pesticidas. A avaliação in situ simultânea à aplicação de herbicidas nos arrozais demonstrou que os efeitos registados foram de facto restritos aos pulsos de herbicidas. A inibição das taxas de alimentação de D. longispina e D. magna forneceram um sinal precoce de alterações no sistema, seguido pela diminuição da sua sobrevivência e do crescimento de P. subcapitata. Em suma, as diferentes fases da avaliação efectuada confirmaram a existência de condições desfavoráveis devido às práticas agrícolas, reforçando a necessidade de se conjugar ensaios laboratoriais com avaliações in situ de maior relevância ecológica, para reduzir o grau de incerteza aliado à determinação dos riscos.
Resumo:
Tese de Doutoramento em Biologia, Especialidade em Biologia Molecular, Universidade do Algarve, 2008