935 resultados para System test complexity
Resumo:
This thesis describes a mechanical assembly system called LAMA (Language for Automatic Mechanical Assembly). The goal of the work was to create a mechanical assembly system that transforms a high-level description of an automatic assembly operation into a program or execution by a computer controlled manipulator. This system allows the initial description of the assembly to be in terms of the desired effects on the parts being assembled. Languages such as WAVE [Bolles & Paul] and MINI [Silver] fail to meet this goal by requiring the assembly operation to be described in terms of manipulator motions. This research concentrates on the spatial complexity of mechanical assembly operations. The assembly problem is seen as the problem of achieving a certain set of geometrical constraints between basic objects while avoiding unwanted collisions. The thesis explores how these two facets, desired constraints and unwanted collisions, affect the primitive operations of the domain.
Resumo:
The Girolando breed progeny test was established in 1997, as a result of the partnership between Girolando and Embrapa Dairy Cattle. In 2007, the Programa de Melhoramento Genético da Raça Girolando? PMGG (Genetic Improvement Program of the Girolando Breed) was implemented. Besides interacting with previously existing initiatives of the Girolando Breeders Association, such as the genealogical register service, the progeny test and the dairy control service, the PMGG launched the Linear Evaluation System (SLAG). The main objectives of the PMGG comprises identification of genetically superior individuals, the technically-oriented multiplication of genetics, the evaluation of economic traits and the promotion of sustainable dairy activities. The program have yielded impressive results. The Girolando breed semen sales increases faster than any other breed in Brazil.
Resumo:
In this paper we present Statistical Rate Monotonic Scheduling (SRMS), a generalization of the classical RMS results of Liu and Layland that allows scheduling periodic tasks with highly variable execution times and statistical QoS requirements. Similar to RMS, SRMS has two components: a feasibility test and a scheduling algorithm. The feasibility test for SRMS ensures that using SRMS' scheduling algorithms, it is possible for a given periodic task set to share a given resource (e.g. a processor, communication medium, switching device, etc.) in such a way that such sharing does not result in the violation of any of the periodic tasks QoS constraints. The SRMS scheduling algorithm incorporates a number of unique features. First, it allows for fixed priority scheduling that keeps the tasks' value (or importance) independent of their periods. Second, it allows for job admission control, which allows the rejection of jobs that are not guaranteed to finish by their deadlines as soon as they are released, thus enabling the system to take necessary compensating actions. Also, admission control allows the preservation of resources since no time is spent on jobs that will miss their deadlines anyway. Third, SRMS integrates reservation-based and best-effort resource scheduling seamlessly. Reservation-based scheduling ensures the delivery of the minimal requested QoS; best-effort scheduling ensures that unused, reserved bandwidth is not wasted, but rather used to improve QoS further. Fourth, SRMS allows a system to deal gracefully with overload conditions by ensuring a fair deterioration in QoS across all tasks---as opposed to penalizing tasks with longer periods, for example. Finally, SRMS has the added advantage that its schedulability test is simple and its scheduling algorithm has a constant overhead in the sense that the complexity of the scheduler is not dependent on the number of the tasks in the system. We have evaluated SRMS against a number of alternative scheduling algorithms suggested in the literature (e.g. RMS and slack stealing), as well as refinements thereof, which we describe in this paper. Consistently throughout our experiments, SRMS provided the best performance. In addition, to evaluate the optimality of SRMS, we have compared it to an inefficient, yet optimal scheduler for task sets with harmonic periods.
Resumo:
A system for recovering 3D hand pose from monocular color sequences is proposed. The system employs a non-linear supervised learning framework, the specialized mappings architecture (SMA), to map image features to likely 3D hand poses. The SMA's fundamental components are a set of specialized forward mapping functions, and a single feedback matching function. The forward functions are estimated directly from training data, which in our case are examples of hand joint configurations and their corresponding visual features. The joint angle data in the training set is obtained via a CyberGlove, a glove with 22 sensors that monitor the angular motions of the palm and fingers. In training, the visual features are generated using a computer graphics module that renders the hand from arbitrary viewpoints given the 22 joint angles. We test our system both on synthetic sequences and on sequences taken with a color camera. The system automatically detects and tracks both hands of the user, calculates the appropriate features, and estimates the 3D hand joint angles from those features. Results are encouraging given the complexity of the task.
Resumo:
A method called "SymbolDesign" is proposed that can be used to design user-centered interfaces for pen-based input devices. It can also extend the functionality of pointer input devices such as the traditional computer mouse or the Camera Mouse, a camera-based computer interface. Users can create their own interfaces by choosing single-stroke movement patterns that are convenient to draw with the selected input device and by mapping them to a desired set of commands. A pattern could be the trace of a moving finger detected with the Camera Mouse or a symbol drawn with an optical pen. The core of the SymbolDesign system is a dynamically created classifier, in the current implementation an artificial neural network. The architecture of the neural network automatically adjusts according to the complexity of the classification task. In experiments, subjects used the SymbolDesign method to design and test the interfaces they created, for example, to browse the web. The experiments demonstrated good recognition accuracy and responsiveness of the user interfaces. The method provided an easily-designed and easily-used computer input mechanism for people without physical limitations, and, with some modifications, has the potential to become a computer access tool for people with severe paralysis.
Resumo:
How do humans rapidly recognize a scene? How can neural models capture this biological competence to achieve state-of-the-art scene classification? The ARTSCENE neural system classifies natural scene photographs by using multiple spatial scales to efficiently accumulate evidence for gist and texture. ARTSCENE embodies a coarse-to-fine Texture Size Ranking Principle whereby spatial attention processes multiple scales of scenic information, ranging from global gist to local properties of textures. The model can incrementally learn and predict scene identity by gist information alone and can improve performance through selective attention to scenic textures of progressively smaller size. ARTSCENE discriminates 4 landscape scene categories (coast, forest, mountain and countryside) with up to 91.58% correct on a test set, outperforms alternative models in the literature which use biologically implausible computations, and outperforms component systems that use either gist or texture information alone. Model simulations also show that adjacent textures form higher-order features that are also informative for scene recognition.
Resumo:
This paper introduces a new class of predictive ART architectures, called Adaptive Resonance Associative Map (ARAM) which performs rapid, yet stable heteroassociative learning in real time environment. ARAM can be visualized as two ART modules sharing a single recognition code layer. The unit for recruiting a recognition code is a pattern pair. Code stabilization is ensured by restricting coding to states where resonances are reached in both modules. Simulation results have shown that ARAM is capable of self-stabilizing association of arbitrary pattern pairs of arbitrary complexity appearing in arbitrary sequence by fast learning in real time environment. Due to the symmetrical network structure, associative recall can be performed in both directions.
Resumo:
A novel miniaturised system for measurement of the in-flight characteristics of an arrow is introduced in this paper. The system allows the user to measure in-flight parameters such as the arrow’s speed, kinetic energy and momentum, arrow drag and vibrations of the arrow shaft. The system consists of electronics, namely a three axis accelerometer, shock switch, microcontroller and EEPROM memory embedded in the arrow tip. The system also includes a docking station for download and processing of in-flight ballistic data from the tip to provide the measured values. With this system, a user can evaluate and optimize their archery equipment setup based on measured ballistic values. Recent test results taken at NIST show the accuracy of the launch velocities to be within +/- 0.59%, when compared with NIST’s most accurate ballistic chronograph.
Resumo:
Wireless Inertial Measurement Units (WIMUs) combine motion sensing, processing & communications functionsin a single device. Data gathered using these sensors has the potential to be converted into high quality motion data. By outfitting a subject with multiple WIMUs full motion data can begathered. With a potential cost of ownership several orders of magnitude less than traditional camera based motion capture, WIMU systems have potential to be crucially important in supplementing or replacing traditional motion capture and opening up entirely new application areas and potential markets particularly in the rehabilitative, sports & at-home healthcarespaces. Currently WIMUs are underutilized in these areas. A major barrier to adoption is perceived complexity. Sample rates, sensor types & dynamic sensor ranges may need to be adjusted on multiple axes for each device depending on the scenario. As such we present an advanced WIMU in conjunction with a Smart WIMU system to simplify this aspect with 3 usage modes: Manual, Intelligent and Autonomous. Attendees will be able to compare the 3 different modes and see the effects of good andbad set-ups on the quality of data gathered in real time.
Resumo:
The work presented in this thesis covers four major topics of research related to the grid integration of wave energy. More specifically, the grid impact of a wave farm on the power quality of its local network is investigated. Two estimation methods were developed regarding the flicker level Pst generated by a wave farm in relation to its rated power as well as in relation to the impedance angle ψk of the node in the grid to which it is connected. The electrical design of a typical wave farm design is also studied in terms of minimum rating for three types of costly pieces of equipment, namely the VAr compensator, the submarine cables and the overhead line. The power losses dissipated within the farm's electrical network are also evaluated. The feasibility of transforming a test site into a commercial site of greater rated power is investigated from the perspective of power quality and of cables and overhead line thermal loading. Finally, the generic modelling of ocean devices, referring here to both wave and tidal current devices, is investigated.
Resumo:
Choosing the right or the best option is often a demanding and challenging task for the user (e.g., a customer in an online retailer) when there are many available alternatives. In fact, the user rarely knows which offering will provide the highest value. To reduce the complexity of the choice process, automated recommender systems generate personalized recommendations. These recommendations take into account the preferences collected from the user in an explicit (e.g., letting users express their opinion about items) or implicit (e.g., studying some behavioral features) way. Such systems are widespread; research indicates that they increase the customers' satisfaction and lead to higher sales. Preference handling is one of the core issues in the design of every recommender system. This kind of system often aims at guiding users in a personalized way to interesting or useful options in a large space of possible options. Therefore, it is important for them to catch and model the user's preferences as accurately as possible. In this thesis, we develop a comparative preference-based user model to represent the user's preferences in conversational recommender systems. This type of user model allows the recommender system to capture several preference nuances from the user's feedback. We show that, when applied to conversational recommender systems, the comparative preference-based model is able to guide the user towards the best option while the system is interacting with her. We empirically test and validate the suitability and the practical computational aspects of the comparative preference-based user model and the related preference relations by comparing them to a sum of weights-based user model and the related preference relations. Product configuration, scheduling a meeting and the construction of autonomous agents are among several artificial intelligence tasks that involve a process of constrained optimization, that is, optimization of behavior or options subject to given constraints with regards to a set of preferences. When solving a constrained optimization problem, pruning techniques, such as the branch and bound technique, point at directing the search towards the best assignments, thus allowing the bounding functions to prune more branches in the search tree. Several constrained optimization problems may exhibit dominance relations. These dominance relations can be particularly useful in constrained optimization problems as they can instigate new ways (rules) of pruning non optimal solutions. Such pruning methods can achieve dramatic reductions in the search space while looking for optimal solutions. A number of constrained optimization problems can model the user's preferences using the comparative preferences. In this thesis, we develop a set of pruning rules used in the branch and bound technique to efficiently solve this kind of optimization problem. More specifically, we show how to generate newly defined pruning rules from a dominance algorithm that refers to a set of comparative preferences. These rules include pruning approaches (and combinations of them) which can drastically prune the search space. They mainly reduce the number of (expensive) pairwise comparisons performed during the search while guiding constrained optimization algorithms to find optimal solutions. Our experimental results show that the pruning rules that we have developed and their different combinations have varying impact on the performance of the branch and bound technique.
Resumo:
Comfort is, in essence, satisfaction with the environment, and with respect to the indoor environment it is primarily satisfaction with the thermal conditions and air quality. Improving comfort has social, health and economic benefits, and is more financially significant than any other building cost. Despite this, comfort is not strictly managed throughout the building lifecycle. This is mainly due to the lack of an appropriate system to adequately manage comfort knowledge through the construction process into operation. Previous proposals to improve knowledge management have not been successfully adopted by the construction industry. To address this, the BabySteps approach was devised. BabySteps is an approach, proposed by this research, which states that for an innovation to be adopted into the industry it must be implementable through a number of small changes. This research proposes that improving the management of comfort knowledge will improve comfort. ComMet is a new methodology proposed by this research that manages comfort knowledge. It enables comfort knowledge to be captured, stored and accessed throughout the building life-cycle and so allowing it to be re-used in future stages of the building project and in future projects. It does this using the following: Comfort Performances – These are simplified numerical representations of the comfort of the indoor environment. Comfort Performances quantify the comfort at each stage of the building life-cycle using standard comfort metrics. Comfort Ratings - These are a means of classifying the comfort conditions of the indoor environment according to an appropriate standard. Comfort Ratings are generated by comparing different Comfort Performances. Comfort Ratings provide additional information relating to the comfort conditions of the indoor environment, which is not readily determined from the individual Comfort Performances. Comfort History – This is a continuous descriptive record of the comfort throughout the project, with a focus on documenting the items and activities, proposed and implemented, which could potentially affect comfort. Each aspect of the Comfort History is linked to the relevant comfort entity it references. These three components create a comprehensive record of the comfort throughout the building lifecycle. They are then stored and made available in a common format in a central location which allows them to be re-used ad infinitum. The LCMS System was developed to implement the ComMet methodology. It uses current and emerging technologies to capture, store and allow easy access to comfort knowledge as specified by ComMet. LCMS is an IT system that is a combination of the following six components: Building Standards; Modelling & Simulation; Physical Measurement through the specially developed Egg-Whisk (Wireless Sensor) Network; Data Manipulation; Information Recording; Knowledge Storage and Access.Results from a test case application of the LCMS system - an existing office room at a research facility - highlighted that while some aspects of comfort were being maintained, the building’s environment was not in compliance with the acceptable levels as stipulated by the relevant building standards. The implementation of ComMet, through LCMS, demonstrates how comfort, typically only considered during early design, can be measured and managed appropriately through systematic application of the methodology as means of ensuring a healthy internal environment in the building.
Resumo:
This thesis investigates the optimisation of Coarse-Fine (CF) spectrum sensing architectures under a distribution of SNRs for Dynamic Spectrum Access (DSA). Three different detector architectures are investigated: the Coarse-Sorting Fine Detector (CSFD), the Coarse-Deciding Fine Detector (CDFD) and the Hybrid Coarse-Fine Detector (HCFD). To date, the majority of the work on coarse-fine spectrum sensing for cognitive radio has focused on a single value for the SNR. This approach overlooks the key advantage that CF sensing has to offer, namely that high powered signals can be easily detected without extra signal processing. By considering a range of SNR values, the detector can be optimised more effectively and greater performance gains realised. This work considers the optimisation of CF spectrum sensing schemes where the security and performance are treated separately. Instead of optimising system performance at a single, constant, low SNR value, the system instead is optimised for the average operating conditions. The security is still provided such that at the low SNR values the safety specifications are met. By decoupling the security and performance, the system’s average performance increases whilst maintaining the protection of licensed users from harmful interference. The different architectures considered in this thesis are investigated in theory, simulation and physical implementation to provide a complete overview of the performance of each system. This thesis provides a method for estimating SNR distributions which is quick, accurate and relatively low cost. The CSFD is modelled and the characteristic equations are found for the CDFD scheme. The HCFD is introduced and optimisation schemes for all three architectures are proposed. Finally, using the Implementing Radio In Software (IRIS) test-bed to confirm simulation results, CF spectrum sensing is shown to be significantly quicker than naive methods, whilst still meeting the required interference probability rates and not requiring substantial receiver complexity increases.
Resumo:
Background: Many European countries including Ireland lack high quality, on-going, population based estimates of maternal behaviours and experiences during pregnancy. PRAMS is a CDC surveillance program which was established in the United States in 1987 to generate high quality, population based data to reduce infant mortality rates and improve maternal and infant health. PRAMS is the only on-going population based surveillance system of maternal behaviours and experiences that occur before, during and after pregnancy worldwide.Methods: The objective of this study was to adapt, test and evaluate a modified CDC PRAMS methodology in Ireland. The birth certificate file which is the standard approach to sampling for PRAMS in the United States was not available for the PRAMS Ireland study. Consequently, delivery record books for the period between 3 and 5 months before the study start date at a large urban obstetric hospital [8,900 births per year] were used to randomly sample 124 women. Name, address, maternal age, infant sex, gestational age at delivery, delivery method, APGAR score and birth weight were manually extracted from records. Stillbirths and early neonatal deaths were excluded using APGAR scores and hospital records. Women were sent a letter of invitation to participate including option to opt out, followed by a modified PRAMS survey, a reminder letter and a final survey.Results: The response rate for the pilot was 67%. Two per cent of women refused the survey, 7% opted out of the study and 24% did not respond. Survey items were at least 88% complete for all 82 respondents. Prevalence estimates of socially undesirable behaviours such as alcohol consumption during pregnancy were high [>50%] and comparable with international estimates.Conclusion: PRAMS is a feasible and valid method of collecting information on maternal experiences and behaviours during pregnancy in Ireland. PRAMS may offer a potential solution to data deficits in maternal health behaviour indicators in Ireland with further work. This study is important to researchers in Europe and elsewhere who may be interested in new ways of tailoring an established CDC methodology to their unique settings to resolve data deficits in maternal health.
Resumo:
Timing-related defects are major contributors to test escapes and in-field reliability problems for very-deep submicrometer integrated circuits. Small delay variations induced by crosstalk, process variations, power-supply noise, as well as resistive opens and shorts can potentially cause timing failures in a design, thereby leading to quality and reliability concerns. We present a test-grading technique that uses the method of output deviations for screening small-delay defects (SDDs). A new gate-delay defect probability measure is defined to model delay variations for nanometer technologies. The proposed technique intelligently selects the best set of patterns for SDD detection from an n-detect pattern set generated using timing-unaware automatic test-pattern generation (ATPG). It offers significantly lower computational complexity and excites a larger number of long paths compared to a current generation commercial timing-aware ATPG tool. Our results also show that, for the same pattern count, the selected patterns provide more effective coverage ramp-up than timing-aware ATPG and a recent pattern-selection method for random SDDs potentially caused by resistive shorts, resistive opens, and process variations. © 2010 IEEE.