974 resultados para Sweet citrus fruit export
Resumo:
Accurate identification of pests is essential for practically all aspects of agricultural development and is critical to the operations of biosecurity that safeguard agricultural integrity and facilitate trade. Diagnostic capability is at the forefront of and complementary to, activities such as border protection, incursion management, surveillance and pest and disease certification. The efficiency of a biosecurity system therefore depends largely on the feedback between these activities and diagnostics. Australian scientists will train Thai scientists in diagnostics and surveillance to provide the Thai DOA with skills that will aid in the development of a Thai Diagnostic Network. The skills will be taught using a range of pests, including some which have particular biosecurity importance for both Australia and Thailand such as citrus canker, potato viruses and fruit flies.
Resumo:
Morinda citrifolia (noni) grows widely throughout the Pacific and is native to Australia. It is a source of traditional medicine amongst Coastal Aboriginal Communities in Cape York, the Pacific Islands and South East Asia, and in recent years has experienced significant economic growth worldwide through a variety of health and cosmetic claims. The largest markets for noni are North America, Europe, Japan, Mexico, Asia and Australia with the worldwide market for these products estimated at US$400 million.
Resumo:
The objectives of this study were to quantify the components of genetic variance and the genetic effects, and to examine the genetic relationship of inbred lines extracted from various shrunken2(sh2) breeding populations. Ten diverse inbred lines developed from genetic background, were crossed in half diallel. Parents and their F1 hybrids were evaluated at three environments. The parents were genotyped using 20 polymorphic simple sequence repeats (SSR). Agronomic and quality traits were analysed by a mixed linear model according to additive-dominance genetic model. Genetic effects were estimated using an adjusted unbiased prediction method. Additive variance was more important than dominance variance in the expression of traits related to ear aspects (husk ratio and percentage of ear filled) and eating quality (flavour and total soluble solids). For agronomic traits, however, dominance variance was more important than additive variance. The additive genetic correlation between flavour and tenderness was strong (r = 0.84, P <0.01). Flavour, tenderness and kernel colour additive genetic effects were not correlated with yield related traits. Genetic distance (GD), estimated from SSR profiles on the basis of Jaccard's similarity coefficient varied from 0.10 to 0.77 with an average of 0.56. Cluster analysis classified parents according to their pedigree relationships. In most studied traits, F1 performance was not associated with GD.
Resumo:
Plant records, derived largely from field studies in Thailand and Malaysia from 1986-94, are provided for 131 species of Southeast Asian Tephritidae.
Resumo:
This book provides for the first time a detailed host list for all the fruit fly species (Tephritidae) known from Australia. It includes available distribution, male lure and host plant information for the 278 species currently recorded from Australia (including Torres Strait Islands but excluding Christmas and Cocos (Keeling) islands in the Indian Ocean). This total includes 269 described species plus nine undescribed species of Tephritinae. Thirteen fruit fly specialists from throughout Australia collaborated with QDPI in the production of this book. It provides an invaluable reference source for anyone involved in fruit fly research, ecological studies, pre- and post-harvest control, regulation, quarantine and market access.
Resumo:
This work evaluated the following aspects of the use of exclusion netting in low chill stone fruit: the efficacy of protection from fruit fly for this highly susceptible crop; the effects on environmental factors; and the effects on crop development. Concurrently, an economic viability study on the use of exclusion netting was undertaken. The trial site was a 0.6-ha block of low chill stone fruit at Nambour, south-east Queensland, Australia. In this area, populations of Queensland fruit fly (Bactrocera tryoni) are known to be substantial, particularly in spring and summer. The trial block contained healthy 4-year-old trees as follows: 96 peach trees (Prunus persica cv. Flordaprince) and 80 nectarine trees (40 P. persica var. nucipersica cv. White Satin and 40 P. persica var. nucipersica cv. Sunwright). Exclusion netting was installed over approximately half of the block in february 2001. The net was a UV-stabilized structural knitted fabric made from high-density polyethylene yarn with a 10-year prorated UV degradation warranty. The results demonstrated the efficacy of exclusion netting in the control of fruit flies. Exclusion netting increased maximum temperatures by 4.4 deg C and decreased minimum temperatures by 0.5 deg C. Although exclusion netting reduced irradiance by approximately 20%, it enhanced fruit development by 7-10 days and improved fruit quality by increasing sugar concentration by 20-30% and colour intensity by 20%.
Resumo:
Laboratory colonies of 15 economically important species of multi-host fruit flies (Diptera:Tephritidae) have been established in eight South Pacific island countries for the purpose of undertaking biological studies, particularly host status testing and research on quarantine treatments. Laboratory rearing techniques are based on the development of artificial diets for larvae consisting predominately of the pulp of locally available fruits including pawpaw, breadfruit and banana. The pawpaw diet is the standard diet and is used in seven countries for rearing 11 species. Diet ingredients are standard proportions of fruit pulp, hydrolysed protein and a bacterial and fungal inhibitor. The diet is particularly suitable for post-harvest treatment studies when larvae of known age are required. Another major development in the laboratory rearing system is the use of pure strains of Enterobacteriaceae bacterial cultures as important adult-feeding supplements. These bacterial cultures are dissected out of the crop of wild females, isolated by sub-culturing, and identified before supply to adults on peptone yeast extract agar plates. Most species are egged using thin, plastic receptacles perforated with 1 mm oviposition holes, with fruit juice or larval diet smeared internally as an oviposition stimulant. Laboratory rearing techniques have been standardised for all of the Pacific countries. Quality control monitoring is based on acceptable ranges in per cent egg hatch, pupal weight and pupal mortality. Colonies are rejuvenated every 6 to 12 months by crossing wild males with laboratory-reared females and vice versa. The standard rearing techniques, equipment and ingredients used in collecting, establishment, maintenance and quality control of these fruit fly species are detailed in this paper.
Resumo:
The studies presented in this thesis aimed to a better understanding of the molecular biology of Sweet potato chlorotic stunt virus (SPCSV, Crinivirus, Closteroviridae) and its role in the development of synergistic viral diseases. The emphasis was on the severe sweet potato virus disease (SPVD) that results from a synergistic interaction of SPCSV and Sweet potato feathery mottle virus (SPFMV, Potyvirus, Potyviridae). SPVD is the most important disease affecting sweetpotato. It is manifested as a significant increase in symptom severity and SPFMV titres. This is accompanied by a dramatic sweetpotato yield reduction. SPCSV titres remain little affected in the diseased plants. Viral synergistic interactions have been associated with the suppression of an adaptive general defence mechanism discovered in plants and known as RNA silencing. In the studies of this thesis two novel proteins (RNase3 and p22) identified in the genome of a Ugandan SPCSV isolate were shown to be involved in suppression of RNA silencing. RNase3 displayed a dsRNA-specific endonuclease activity that enhanced the RNA-silencing suppression activity of p22. Comparative analyses of criniviral genomes revealed variability in the gene content at the 3´end of the genomic RNA1. Molecular analyses of different isolates of SPCSV indicated a marked intraspecific heterogeneity in this region where the p22 and RNase3 genes are located. Isolates of the East African strain of SPCSV from Tanzania and Peru and an isolate from Israel were missing a 767-nt fragment that included the p22 gene. However, regardless of the absence of p22, all SPCSV isolates acted synergistically with SPFMV in co-infected sweetpotato, enhanced SPFMV titres and caused SPVD. These results showed that p22 is dispensable for development of SPVD. The role of RNase3 in SPVD was then studied by generating transgenic plants expressing the RNase3 protein. These plants had increased titres of SPFMV (ca. 600-fold higher in comparison with nontransgenic plants) 2-3 weeks after graft inoculation and displayed the characteristic SPVD symptoms. RNA silencing suppression (RSS) activity of RNase3 was detected in agroinfiltrated leaves of Nicotiana bethamiana. In vitro studies showed that RNase3 was able to cleave small interferring RNAs (siRNA) to products of ~14-nt. The data thus identified RNase3 as a suppressor of RNA silencing able to cleave siRNAs. RNase3 expression alone was sufficient for breaking down resistance to SPFMV in sweetpotato and for the development of SPVD. Similar RNase III-like genes exist in animal viruses which points out a novel and possibly more general mechanism of RSS by viruses. A reproducible method of sweetpotato transformation was used to target RNA silencing against the SPCSV polymerase region (RdRp) with an intron-spliced hairpin construct. Hence, engineered resistance to SPCSV was obtained. Ten out of 20 transgenic events challenged with SPCSV alone showed significantly reduced virus titres. This was however not sufficient to prevent SPVD upon coinfection with SPFMV. Immunity to SPCSV seems to be required to control SPVD and targeting of different SPCSV regions need to be assessed in further studies. Based on the identified key role of RNase3 in SPVD the possibility to design constructs that target this gene might prove more efficient in future studies.
Resumo:
Fourier Transform (FT)-near infra-red spectroscopy (NIRS) was investigated as a non-invasive technique for estimating percentage (%) dry matter of whole intact 'Hass' avocado fruit. Partial least squares (PLS) calibration models were developed from the diffuse reflectance spectra to predict % dry matter, taking into account effects of seasonal variation. It is found that seasonal variability has a significant effect on model predictive performance for dry matter in avocados. The robustness of the calibration model, which in general limits the application for the technique, was found to increase across years (seasons) when more seasonal variability was included in the calibration set. The R-v(2) and RMSEP for the single season prediction models predicting on an independent season ranged from 0.09 to 0.61 and 2.63 to 5.00, respectively, while for the two season models predicting on the third independent season, they ranged from 0.34 to 0.79 and 2.18 to 2.50, respectively. The bias for single season models predicting an independent season was as high as 4.429 but <= 1.417 for the two season combined models. The calibration model encompassing fruit from three consecutive years yielded predictive statistics of R-v(2) = 0.89, RMSEP = 1.43% dry matter with a bias of -0.021 in the range 16.1-39.7% dry matter for the validation population encompassing independent fruit from the three consecutive years. Relevant spectral information for all calibration models was obtained primarily from oil, carbohydrate and water absorbance bands clustered in the 890-980, 1005-1050, 1330-1380 and 1700-1790 nm regions. These results indicate the potential of FT-NIRS, in diffuse reflectance mode, to non-invasively predict the % dry matter of whole 'Hass' avocado fruit and the importance of the development of a calibration model that incorporates seasonal variation. Crown Copyright (c) 2012 Published by Elsevier B.V. All rights reserved.
Resumo:
Fruit flies require protein for reproductive development and actively feed upon protein sources in the field. Liquid protein baits mixed with insecticide are used routinely to manage pest fruit flies, such as Bactrocera tryoni (Froggatt). However, there are still some gaps in the underpinning science required to improve the efficacy of bait spray technology. The spatial and temporal foraging behaviour of B. tryoni in response to protein was investigated in the field. A series of linked trials using either wild flies in the open field or laboratory-reared flies in field cages and a netted orchard were undertaken using nectarines and guavas. Key questions investigated were the fly's response to protein relative to: height of protein within the canopy, fruiting status of the tree, time of day, season and size of the experimental arena. Canopy height had a significant response on B. tryoni foraging, with more flies foraging on protein in the mid to upper canopy. Fruiting status also had a significant effect on foraging, with most flies responding to protein when applied to fruiting hosts. B. tryoni demonstrated a repeatable diurnal response pattern to protein, with the peak response being between 12:0016:00 h. Season showed significant but unpredictable effects on fruit fly response to protein in the subtropical environment where the work was undertaken. Relative humidity, but not temperature or rainfall, was positively correlated with protein response. The number of B. tryoni responding to protein decreased dramatically as the spatial scale increased from field cage through to the open field. Based on these results, it is recommend that, to be most effective, protein bait sprays should be applied to the mid to upper canopies of fruiting hosts. Overall, the results show that the protein used, an industry standard, has very low attractancy to B. tryoni and that further work is urgently needed to develop more volatile protein baits.
Resumo:
Obesity is associated with many chronic disease states, such as diabetes mellitus, coronary disease and certain cancers, including those of the breast and colon. There is a growing body of evidence that links phytochemicals with the inhibition of adipogenesis and protection against obesity. Mangoes (Mangifera indica L.) are tropical fruits that are rich in a diverse array of bioactive phytochemicals. In this study, methanol extracts of peel and flesh from three archetypal mango cultivars; Irwin, Nam Doc Mai and Kensington Pride, were assessed for their effects on a 3T3-L1 pre-adipocyte cell line model of adipogenesis. High content imaging was used to assess: lipid droplets per cell, lipid droplet area per cell, lipid droplet integrated intensity, nuclei count and nuclear area per cell. Mango flesh extracts from the three cultivars did not inhibit adipogenesis; peel extracts from both Irwin and Nam Doc Mai, however, did so with the Nam Doc Mai extract most potent at inhibiting adipogenesis. Peel extract from Kensington Pride promoted adipogenesis. The inhibition of adipogenesis by Irwin (100 mu g mL(-1)) and Nam Doc Mai peel extracts (50 and 100 mu g mL(-1)) was associated with an increase in the average nuclear area per cell; similar effects were seen with resveratrol, suggesting that these extracts may act through pathways similar to resveratrol. These results suggest that differences in the phytochemical composition between mango cultivars may influence their effectiveness in inhibiting adipogenesis, and points to mango fruit peel as a potential source of nutraceuticals.
Resumo:
Mango is an important horticultural fruit crop and breeding is a key strategy to improve ongoing sustainability. Knowledge of breeding values of potential parents is important for maximising progress from breeding. This study successfully employed a mixed linear model methods incorporating a pedigree to predict breeding values for average fruit weight from highly unbalanced data for genotypes planted over three field trials and assessed over several harvest seasons. Average fruit weight was found to be under strong additive genetic control. There was high correlation between hybrids propagated as seedlings and hybrids propagated as scions grafted onto rootstocks. Estimates of additive genetic correlation among trials ranged from 0.69 to 0.88 with correlations among harvest seasons within trials greater than 0.96. These results suggest that progress from selection for broad adaptation can be achieved, particularly as no repeatable environmental factor that could be used to predict G x E could be identified. Predicted breeding values for 35 known cultivars are presented for use in ongoing breeding programs.
Resumo:
Significant interactions have been demonstrated between production factors and postharvest quality of fresh fruit. Accordingly, there is an attendant need for adaptive postharvest actions to modulate preharvest effects. The most significant preharvest effects appear to be mediated through mineral nutrition influences on the physical characteristics of fruit. Examples of specific influencers include fertilisers, water availability, rootstock, and crop load effects on fruit quality attributes such as skin colour, susceptibility to diseases and physiological disorders, and fruit nutritional composition. Also, rainfall before and during harvest can markedly affect fruit susceptibility to skin blemishes, physical damage, and diseases. Knowledge of preharvest-postharvest interactions can help determine the basis for variability in postharvest performance and thereby allow refinement of postharvest practices to minimise quality loss after harvest. This knowledge can be utilised in predictive management systems. Such systems can benefit from characterisation of fruit nutritional status, particularly minerals, several months before and/or at harvest to allow informed decisions on postharvest handling and marketing options. Other examples of proactive management practices include adjusting harvesting and packing systems to account for rainfall effects before and/or during harvest. Improved understanding of preharvest-postharvest interactions is contributing to the delivery of consistently higher quality of fruit to consumers. This paper focuses on the state of knowledge for sub-tropical and tropical fruits, in particular avocado and mango.