977 resultados para Swedish Direct Characterization


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Manganese minerals ardenite, alleghanyite and leucopoenicite originated from Madhya Pradesh, India, Nagano prefecture Japan, Sussex Country and Parker Shaft Franklin, Sussex Country, New Jersey respectively are used in the present work. In these minerals manganese is the major constituent and iron if present is in traces only. An EPR study of on all of the above samples confirms the presence of Mn(II) with g around 2.0. Optical absorption spectrum of the mineral alleghanyite indicates that Mn(II) is present in two different octahedral sites and in leucophoenicite Mn(II) is also in octahedral geometry. Ardenite mineral gives only a few Mn(II) bands. NIR results of the minerals ardenite, leucophoenicite and alleghanyite are due to hydroxyl and silicate anions which confirming the formulae of the minerals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Raman spectroscopy complimented with infrared spectroscopy has been used to study the rare earth based mineral huanghoite with possible formula given as BaCe(CO3)2F and compared with the Raman spectra of a series of selected natural halogenated carbonates from different origins including bastnasite, parisite and northupite. The Raman spectrum of huanghoite displays three bands are at 1072, 1084 and 1091 cm−1 attributed to the symmetric stretching vibration. The observation of three symmetric stretching vibrations is very unusual. The position of symmetric stretching vibration varies with mineral composition. Infrared spectroscopy of huanghoite show bands at 1319, 1382, 1422 and 1470 cm−1. No Raman bands of huanghoite were observed in these positions. Raman spectra of bastnasite, parisite and northupite show a single band at 1433, 1420 and 1554 cm−1 assigned to the ν3 (CO3)2− antisymmetric stretching mode. The observation of additional Raman bands for the ν3 modes for some halogenated carbonates is significant in that it shows distortion of the carbonate anion in the mineral structure. Four Raman bands for huanghoite are observed at 687, 704, 718 and 730 cm−1and assigned to the (CO3)2− ν2 bending modes. Raman bands are observed for huanghoite at around 627 cm−1 and are assigned to the (CO3)2− ν4 bending modes. Raman bands are observed for the carbonate ν4 in phase bending modes at 722 cm−1 for bastnasite, 736 and 684 cm−1 for parisite, 714 cm−1 for northupite. Raman bands for huanghoite observed at 3259, 3484 and 3589 cm−1 are attributed to water stretching bands. Multiple bands are observed in the OH stretching region for bastnasite and parisite indicating the presence of water and OH units in their mineral structure. Vibrational spectroscopy enables new information on the structure of huanghoite to be assessed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Natural single-crystal specimens of barbosalite from Brazil, with general formula Fe2+Fe3+ 2 (PO4)2(OH)2 were investigated by Raman and infrared spectroscopy. The mineral occurs as secondary products in granitic pegmatites. The Raman spectrum of barbosalite is characterized by bands at 1020, 1033 and 1044 cm−1 cm−1, assigned to ν1 symmetric stretching mode of the HOPO3- 3 and PO3- 4 units. Raman bands at around 1067, 1083 and 1138 cm−1 are attributed to both the HOP and PO antisymmetric stretching vibrations. The set of Raman bands observed at 575, 589 and 606 cm−1 are assigned to the ν4 out of plane bending modes of the PO4 and H2PO4 units. Raman bands at 439, 461, 475 and 503 cm−1 are attributed to the ν2 PO4 and H2PO4 bending modes. Strong Raman bands observed at 312, 346 cm−1 with shoulder bands at 361, 381 and 398 cm−1 are assigned to FeO stretching vibrations. No bands which are attributable to water vibrations were found. Vibrational spectroscopy enables aspects of the molecular structure of barbosalite to be assessed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The molecular structure of the arsenate mineral ceruleite has been assessed using a combination of Raman and infrared spectroscopy. The most intense band observed at 903 cm-1 is assigned to the (AsO4)3- symmetric stretching vibrational mode. The infrared spectrum shows intense bands at 787, 827 and 886 cm-1, ascribed to the triply degenerate m3 antisymmetric stretching vibration. Raman bands observed at 373, 400, 417 and 430 cm-1 are attributed to the m2 vibrational mode. Three broad bands for ceruleite found at 3056, 3198 and 3384 cm-1 are assigned to water OH stretching bands. By using a Libowitzky empirical equation, hydrogen bond distances of 2.65 and 2.75 Å are calculated. Vibrational spectra enable the molecular structure of the ceruleite mineral to be determined and whilst similarities exist in the spectral patterns with the roselite mineral group, sufficient differences exist to be able to determine the identification of the minerals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Natural single-crystal specimens of the herderite-hydroxylherderite series from Brazil, with general formula CaBePO4(F,OH), were investigated by electron microprobe, Raman, infrared and near-infrared spectroscopies. The minerals occur as secondary products in granitic pegmatites. Herderite and hydroxylherderite minerals show extensive solid solution formation. The Raman spectra of hydroxylherderite are characterized by bands at around 985 and 998 cm-1, assigned to ν1 symmetric stretching mode of the HOPO33- and PO43- units. Raman bands at around 1085, 1128 and 1138 cm-1 are attributed to both the HOP and PO antisymmetric stretching vibrations. The set of Raman bands observed at 563, 568, 577, 598, 616 and 633 cm-1 are assigned to the ν4 out of plane bending modes of the PO4 and H2PO4 units. The OH Raman stretching vibrations of hydroxylherderite were observed ranging from 3626 cm-1 to 3609 cm-1. The infrared stretching vibrations of hydroxylherderites were observed between 3606 cm-1 and 3599 cm-1. By using a Libowitzky type function, hydrogen bond distances based upon the OH stretching bands were calculated. Characteristic NIR bands at around 6961 and 7054 cm-1 were assigned to the first overtone of the fundamental, whilst NIR bands at 10194 and 10329 cm-1 are assigned to the second overtone of the fundamental OH stretching vibration. Insight into the structure of the herderite-hydroxylherderite series is assessed by vibrational spectroscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mineral ettringite has been studied using a number of techniques, including XRD, SEM with EDX, thermogravimetry and vibrational spectroscopy. The mineral proved to be composed of 53% of ettringite and 47% of thaumasite in a solid solution. Thermogravimetry shows a mass loss of 46.2% up to 1000 °C. Raman spectroscopy identifies multiple sulphate symmetric stretching modes in line with the three sulphate crystallographically different sites. Raman spectroscopy also identifies a band at 1072 cm−1 attributed to a carbonate symmetric stretching mode, confirming the presence of thaumasite. The observation of multiple bands in the ν4 spectral region between 700 and 550 cm−1 offers evidence for the reduction in symmetry of the sulphate anion from Td to C2v or even lower symmetry. The Raman band at 3629 cm−1 is assigned to the OH unit stretching vibration and the broad feature at around 3487 cm−1 to water stretching bands. Vibrational spectroscopy enables an assessment of the molecular structure of natural ettringite to be made.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Results of an interlaboratory comparison on size characterization of SiO2 airborne nanoparticles using on-line and off-line measurement techniques are discussed. This study was performed in the framework of Technical Working Area (TWA) 34—“Properties of Nanoparticle Populations” of the Versailles Project on Advanced Materials and Standards (VAMAS) in the project no. 3 “Techniques for characterizing size distribution of airborne nanoparticles”. Two types of nano-aerosols, consisting of (1) one population of nanoparticles with a mean diameter between 30.3 and 39.0 nm and (2) two populations of non-agglomerated nanoparticles with mean diameters between, respectively, 36.2–46.6 nm and 80.2–89.8 nm, were generated for characterization measurements. Scanning mobility particle size spectrometers (SMPS) were used for on-line measurements of size distributions of the produced nano-aerosols. Transmission electron microscopy, scanning electron microscopy, and atomic force microscopy were used as off-line measurement techniques for nanoparticles characterization. Samples were deposited on appropriate supports such as grids, filters, and mica plates by electrostatic precipitation and a filtration technique using SMPS controlled generation upstream. The results of the main size distribution parameters (mean and mode diameters), obtained from several laboratories, were compared based on metrological approaches including metrological traceability, calibration, and evaluation of the measurement uncertainty. Internationally harmonized measurement procedures for airborne SiO2 nanoparticles characterization are proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article presents a method for making highly porous biodegradable scaffold that may ultimately be used for tissue engineering. Poly(L-lactic-co-1-caprolactone) acid (70:30) (PLCL) scaffold was produced using the solvent casting/leaching out method, which entails dissolving the polymer and adding a porogen that is then leached out by immersing the scaffold in distillated water. Tensile tests were performed for three types of scaffolds, namely pre-wetted, dried, and UV-irradiated scaffolds and their mechanical properties were measured. The prewetted PLCL scaffold possessed a modulus of elasticity 0.92+0.09 MPa, a tensile strength of 0.12+0.03 MPa and an ultimate strain of 23+5.3%. No significant differences in the modulus elasticity, tensile strength, nor ultimate strain were found between the pre-wetted, dried, and UV irradiated scaffolds. The PLCL scaffold was seeded by human fibroblasts in order to evaluate its biocompatibility by Alamar bluew assays. After 10 days of culture, the scaffolds showed good biocompatibility and allowed cell proliferation. However, the fibroblasts stayed essentially at the surface. This study shows the possibility to use the PLCL scaffold in dynamic mechanical conditions for tissue engineering

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sweden’s protest against the Vietnam War was given tangible form in 1969 through the decision to give economic aid to the Government of North Vietnam. The main outcome was an integrated pulp and paper mill in the Vinh Phu Province north-west of Hanoi. Known as Bai Bang after its location, the mill became the most costly, one of the longest lasting and the most controversial project in the history of Swedish development cooperation. In 1996 Bai Bang produced at its full capacity. Today the mill is exclusively managed and staffed by the Vietnamese and there are plans for future expansion. At the same time a substantial amount of money has been spent to reach these achievements. Looking back at the cumbersome history of the project the results are against many’s expectations. To learn more about the conditions for sustainable development Sida commissioned two studies of the Bai Bang project. Together they touch upon several important issues in development cooperation over a period of almost 30 years: the change of aid paradigms over time, the role of foreign policy in development cooperation, cultural obstacles, recipient responsibility versus donor led development etc. The two studies were commissioned by Sida’s Department for Evaluation and Internal Audit which is an independent department reporting directly to Sida’s Board of Directors. One study assesses the financial and economic viability of the pulp and paper mill and the broader development impact of the project in Vietnam. It has been carried out by the Centre for International Economics, an Australian private economic research agency. The other study analyses the decision-making processes that created and shaped the project over a period of two decades, and reflects on lessons from the project for development cooperation in general. This study has been carried out by the Chr. Michelsen Institute, a Norweigan independent research institution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanowires (NWs) have attracted appealing and broad application owing to their remarkable mechanical, optical, electrical, thermal and other properties. To unlock the revolutionary characteristics of NWs, a considerable body of experimental and theoretical work has been conducted. However, due to the extremely small dimensions of NWs, the application and manipulation of the in situ experiments involve inherent complexities and huge challenges. For the same reason, the presence of defects appears as one of the most dominant factors in determining their properties. Hence, based on the experiments' deficiency and the necessity of investigating different defects' influence, the numerical simulation or modelling becomes increasingly important in the area of characterizing the properties of NWs. It has been noted that, despite the number of numerical studies of NWs, significant work still lies ahead in terms of problem formulation, interpretation of results, identification and delineation of deformation mechanisms, and constitutive characterization of behaviour. Therefore, the primary aim of this study was to characterize both perfect and defected metal NWs. Large-scale molecular dynamics (MD) simulations were utilized to assess the mechanical properties and deformation mechanisms of different NWs under diverse loading conditions including tension, compression, bending, vibration and torsion. The target samples include different FCC metal NWs (e.g., Cu, Ag, Au NWs), which were either in a perfect crystal structure or constructed with different defects (e.g. pre-existing surface/internal defects, grain/twin boundaries). It has been found from the tensile deformation that Young's modulus was insensitive to different styles of pre-existing defects, whereas the yield strength showed considerable reduction. The deformation mechanisms were found to be greatly influenced by the presence of defects, i.e., different defects acted in the role of dislocation sources, and many affluent deformation mechanisms had been triggered. Similar conclusions were also obtained from the compressive deformation, i.e., Young's modulus was insensitive to different defects, but the critical stress showed evident reduction. Results from the bending deformation revealed that the current modified beam models with the considerations of surface effect, or both surface effect and axial extension effect were still experiencing certain inaccuracy, especially for the NW with ultra small cross-sectional size. Additionally, the flexural rigidity of the NW was found to be insensitive to different pre-existing defects, while the yield strength showed an evident decrease. For the resonance study, the first-order natural frequency of the NW with pre-existing surface defects was almost the same as that from the perfect NW, whereas a lower first-order natural frequency and a significantly degraded quality factor was observed for NWs with grain boundaries. Most importantly, the <110> FCC NWs were found to exhibit a novel beat phenomenon driven by a single actuation, which was resulted from the asymmetry in the lattice spacing in the (110) plane of the NW cross-section, and expected to exert crucial impacts on the in situ nanomechanical measurements. In particular, <110> Ag NWs with rhombic, truncated rhombic, and triangular cross-sections were found to naturally possess two first-mode natural frequencies, which were envisioned with applications in NEMS that could operate in a non-planar regime. The torsion results revealed that the torsional rigidity of the NW was insensitive to the presence of pre-existing defects and twin boundaries, but received evident reduction due to grain boundaries. Meanwhile, the critical angle decreased considerably for defected NWs. This study has provided a comprehensive and deep investigation on the mechanical properties and deformation mechanisms of perfect and defected NWs, which will greatly extend and enhance the existing knowledge and understanding of the properties/performance of NWs, and eventually benefit the realization of their full potential applications. All delineated MD models and theoretical analysis techniques that were established for the target NWs in this research are also applicable to future studies on other kinds of NWs. It has been suggested that MD simulation is an effective and excellent tool, not only for the characterization of the properties of NWs, but also for the prediction of novel or unexpected properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An ironless motor for use as direct wheel drive is presented. The motor is intended for use in a lightweight (600kg), low drag, series hybrid commuter vehicle under development at The University of Queensland. The vehicle will utilise these ironless motors in each of its rear wheels, with each motor producing a peak torque output of 500Nm and a maximum rotational speed of 1500rpm. The axial flux motor consists of twin Ironless litz wire stators with a central magnetic ring and simplified Halbach magnet arrays on either side. A small amount of iron is used to support the outer Halbach arrays and to improve the peak magnetic flux density. Ducted air cooling is used to remove heat from the motor and will allow for a continuous torque rating of 250Nm. Ironless machines have previously been shown to be effective in high speed, high frequency applications (+1000Hz). They are generally regarded as non-optimal for low speed applications as iron cores allow for better magnet utilisation and do not significantly increase the weight of a machine. However, ironless machines can also be seen to be effective in applications where the average torque requirement is much lower than the peak torque requirement such as in some vehicle drive applications. The low spinning losses in ironless machines are shown to result in very high energy throughput efficiency in a wide range of vehicle driving cycles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The formation of highly anisotropic AuPt alloys has been achieved via a simple electrochemical approach without the need for organic surfactants to direct the growth process. The surface and bulk properties of these materials were characterised by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX) and electrochemically by cyclic voltammetry to confirm alloy formation. It was found that AuPt materials are highly active for both the model hydrogen evolution reaction and the fuel cell relevant formic acid oxidation reaction. In particular for the latter case the preferred dehydrogenation pathway was observed at AuPt compared to nanostructured Pt prepared under identical electrochemical conditions which demonstrated the less preferred dehydration pathway. The enhanced performance is attributed to both the ensemble effect which facilitates CO(ads) removal from the surface as well as the highly anisotropic nanostructure of AuPt.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we have investigated on the natural wendwilsonite mineral with the formulae Ca2(Mg,Co)(AsO4)2⋅2(H2O). Raman spectroscopy complimented with infrared spectroscopy has been used to determine the molecular structure of the wendwilsonite arsenate mineral. A comparison is made with the roselite mineral group with formula Ca2B(AsO4)2⋅2H2O (where B may be Co, Fe2+, Mg, Mn, Ni, Zn). The Raman spectra of the arsenate related to tetrahedral arsenate clusters with stretching region shows strong differences between that of wendwilsonite and the roselite arsenate minerals which is attributed to the cation substitution for calcium in the structure. The Raman arsenate (AsO4)3− stretching region shows strong differences between that of wendwilsonite and the roselite arsenate minerals which is attributed to the cation substitution for calcium in the structure. In the infrared spectra complexity exists of multiple to tetrahedral (AsO4)3− clusters with antisymmetric stretching vibrations observed indicating a reduction of the tetrahedral symmetry. This loss of degeneracy is also reflected in the bending modes. Strong Raman bands around 450 cm−1 are assigned to ν4 bending modes. Multiple bands in the 350–300 cm−1 region assigned to ν2 bending modes provide evidence of symmetry reduction of the arsenate anion. Three broad bands for wendwilsonite found at 3332, 3119 and 3001 cm−1 are assigned to OH stretching bands. By using a Libowitzky empirical equation, hydrogen bond distances of 2.65 and 2.75 Å are estimated. Vibrational spectra enable the molecular structure of the wendwilsonite mineral to be determined and whilst similarities exist in the spectral patterns with the roselite mineral group, sufficient differences exist to be able to determine the identification of the minerals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Natural single-crystal specimens of althausite from Brazil, with general formula Mg2(PO4)(OH,F,O) were investigated by Raman and infrared spectroscopy. The mineral occurs as a secondary product in granitic pegmatites. The Raman spectrum of althausite is characterized by bands at 1020, 1033 and 1044 cm-1, assigned to ν1 symmetric stretching modes of the HOPO33- and PO43- units. Raman bands at around 1067, 1083 and 1138 cm-1 are attributed to both the HOP and PO antisymmetric stretching vibrations. The set of Raman bands observed at 575, 589 and 606 cm-1 are assigned to the ν4 out of plane bending modes of the PO4 and H2PO4 units. Raman bands at 439, 461, 475 and 503 cm-1 are attributed to the ν2 PO4 and H2PO4 bending modes. Strong Raman bands observed at 312, 346 cm-1 with shoulder bands at 361, 381 and 398 cm-1 are assigned to MgO stretching vibrations. No bands which are attributable to water were found. Vibrational spectroscopy enables aspects of the molecular structure of althausite to be assessed.