909 resultados para Surface-Area
Resumo:
The present work investigated the effect of coprecipitation-oxidant synthesis on the specific surface area of perovskite-type oxides LaBO3 (B= Mn, Ni, Fe) for total oxidation of ethanol. The perovskite-type oxides were characterized by X-ray diffraction, nitrogen adsorption (BET method), thermogravimetric analysis (TGA-DTA), TPR and X-ray photoelectron spectroscopy (XPS). Through method involving the coprecipitation-oxidant was possible to obtain catalysts with different BET specific surface areas, of 33-51 m²/g. The results of the catalytic test confirmed that all oxides investigated in this work have specific catalytic activity for total oxidation of ethanol, though the temperatures for total conversion change for each transition metal.
Resumo:
The simultaneous use of the specific values of some structural and chemical properties of clay minerals, such as kaolinite, montmorillonite and talc, allows the development of new properties for these materials, especially in relation to the external and internal microcrystal surfaces. These developments are very diversified for montmorillonite, due to the high specific surface area, expansible basal spacings, easy intercalation inside the 2:1 structural layers and a reversible and high cation exchance capacity. The review presents examples of chemical modifications on kaolins, montmorillonites (bentonites) and talcs.
Resumo:
This work consists in a study about the chemical activation of charred rice hulls using NaOH as the activation agent. The influence of the naturally-occurring silica was particularly evidenced. X-ray diffraction patterns showed the formation of sodium carbonate and silicates in the activated samples, whereas thermogravimetric curves revealed a strong reduction in the ash content of these samples after washing with water. Nitrogen adsorption data indicated a microporosity development only in the washed samples, with BET surface area values of 450 and 1380 m²/g achieved for the samples activated at 800 °C starting from the precursor with or without silica, respectively.
Resumo:
Coffee fruit processing is one of the most polluting activities in agriculture due to the large amount of waste generated in the process. In this work, coffee parchment was employed as precursor for the production of carbons activated with ZnCl2 (CAP). The material was characterized using N2 adsorption/desorption at 77 K, Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The material showed a surface area of 521.6 m²g-1 and microporous structure. CAP was applied as adsorbent for the removal of methylene blue dye in aqueous medium. The adsorption capacity was found to be about 188.7 mg g-1.
Resumo:
The aim of this work was to prepare and characterize spray-dried nanocapsule-coated microparticles obtained in one step, using indomethacin as a hydrophobic drug model and poly(e-caprolactone) or Eudragit® RS100, as polymers. Nanocapsule-coated microparticles showed micrometric mean sizes (10 - 15 µm) and a reduced surface area (75 - 85 m²g-1) compared to the raw material (214 m²g-1). Microparticles coated with Eudragit® RS100-nanocapsules showed a better control of the drug release. The release profiles fit to the monoexponetial model and to the Power Law. The mechanism of the indomethacin release from the microparticles is non-Fickian and depends on the particles desagglomeration.
Resumo:
This work describes the study the adsorption of a cationic surfactant, cetyl trimethyl ammonium bromide (CTAB) in the hydrous niobium phosphate matrix. The matrix was characterized by powder X-ray diffraction (DRX), thermal analysis (TG), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and surface area measurements (BET). The Langmuir and Freundlich isothermal models were used in the CTAB adsorption study. The adsorption process wasn`t favorable for the NbOPO4.nH2O in both studied models.
Resumo:
This work proposes the synthesis of zeolite A by IZA standard proceedures starting from a natural clay. The clay was used in its natural form and after calcination at 900ºC. The resulting materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and porosity analysis by nitrogen adsorption. Results showed low surface area for Na-A zeolite in sodium form, but a higher one in CaA based on the nitrogen accessibility. The presence of cubic crystals for the A phase was observed in the SEM micrographies. The new procedure starting from natural clay favors the formation of sodalite while that using the calcinated clay gives A.
Resumo:
A new kind of material, denominated MCM-71, was synthesized and characterized by several complementary techniques: X Ray Diffractometry, textural analysis by nitrogen adsorption, Scanning electronic microscopy and infrared spectroscopy. MCM-71 zeolite was successfully synthesized by hydrothermal synthesis in the presence of triethanolamine. Mordenite phase as impurity was not detected, otherwise quartz was observed. The MCM-71 sample obtained presented a BET surface area of 20 m²/g in the as synthesized form and of 85 m²/g in protonic form. By SEM was observed crystals with rectangular shape with average size of 2 x 0,2 x 0,05 µm and this crystals were agglomerated in spherical particles with average diameter between 14 and 24 µm.
Resumo:
In this work it is proposed a simple and versatile undergraduate chemical experiment in polymer and environmental technology based on the process of polyethylene terephthalate (PET) hydrolysis. Polyethylene terephthalate from post-consume bottles is submitted to a controlled partial hydrolysis which allows the students to follow the reaction by a simple procedure. The students can explore the reaction kinetics, the effect of catalysts and the exposed polyethylene terephthalate surface area on the hydrolysis reaction. The second and innovative part of this experiment is the technological and environmental application of the hydrolyzed polyethylene terephthalate as a material with cation exchange properties. The surface hydrolyzed polyethylene terephthalate can be used as adsorbent for cationic contaminants.
Resumo:
Two samples of calcic bentonite of the Santa Elena Peninsula, Ecuador, were pillared with Al13 ions in the ratio of 10, 15 and 20 meq of Al g-1 of clay, calcinated at 573, 723 and 873 ºK and acid activated with 4, 6 and 8 mol L-1 H2SO4. Analyses by X-ray diffraction, X-ray fluorescence, differential and gravimetric thermal, density, surface area and porosity, were applied in order to study the modifications occurred in the crystalline structure of the montmorillonite. The 8 mol L-1 H2SO4 acid-activated 15 meq of Al g-1 of clay at 573 ºK Al-pillared samples indicated the best results in the bleaching of the soybean oil measured by UV-visible spectrophotometer.
Resumo:
Titanium dioxide is an efficient photocatalist, being possible to improve its efficiency with better charge separation which occurs when it is coupled with other semiconductors. Nanometric particles of ZnO were used to impregnate TiO2 P25 in order to optimize its photocatalytic properties. ZnO/TiO2 composites were obtained at different proportions and were characterized by X-ray diffraction (XRD), micro-Raman and diffuse reflectance spectroscopies, measurement of surface area (BET) and scanning electron microscopy (SEM). Raman spectroscopy data revealed a change on the TiO2 surface due the presence of ZnO which was observed by an enlargement of TiO2 peaks and a change on the relation rate between anatase and rutile phases of the composites. The photodegradation of azo-dye Drimaren red revealed better efficiency for ZnO/TiO2 3% nanocomposite and for ZnO pure.
Resumo:
For this study, magnetic composite of zeolite-magnetite was prepared by mixing magnetite nanoparticles suspension with synthetic zeolite. The nanoparticles in suspension were synthesized by precipitating iron ions in a NaOH solution. The zeolite was synthesized from coal fly ash by alkaline hydrothermal treatment. The magnetic composite was characterized by XDR, SEM, magnetization measurements, IR, and BET surface area. Batch tests were carried out to investigate the adsorption of metal ions of Zn2+, Cd2+ and Pb2+ from aqueous solution onto magnetic composite. Adsorption isotherms were analyzed using Freundlich and Langmuir equations. The adsorption equilibrium data fitted well to the Langmuir equation with maximum adsorption capacities in the range of 28.5-127 mg g-1.
Resumo:
The aim of this work is to propose a methodology to evaluate the evolution of the pore blockage of limestone during the sulfation reaction. The experiments were performed for a national limestone (dolomite) with average particle size of 545 μm in interrupted sulfation tests were conducted at seven different times and at three different temperatures of the process. The empirical data were obtained from porosimetry tests to establish BET surface area, volume and average size of pore and distribution of pore sizes of the sulfated samples. Thermogravimetric tests were performed to evaluate the preparation methodology of the samples used in the porosimetry tests.
Resumo:
In this study, Disc and honeycomb-shaped activated carbon monoliths were obtained using as a precursor coconut shell, without the use of any binder. Textural characterization was performed by adsorption of N2 at 77 K and immersion calorimetry into benzene. The experimental results showed that the activation with zinc chloride produces a wide development of micropores, yielding micropore volumes between 0,38 and 0,79 cm³ g-1, apparent BET surface area between 725 and 1523 m² g-1 and immersion enthalpy between 73,5 and 164,2 J g-1.Were made comparisons between textural parameters and energy characteristics.
Resumo:
The major applications of organoclays are in adsorption of organic polluents. The objective of this work was the synthesis and characterization of organoclays using differents amounts of cationic surfactant hexadecyltrimethylammonium bromide. The clays were characterized by low angle x-ray diffraction (XRD), scanning electron microscope (SEM), infrared with Fourier tranformation (FTIR), BET surface area, elemental analysis (CHN), Foster swell and adsorption of methylene blue. The surfactant can adsorb in differents forms in the interlamelar region changed the basal spacing. The presence of the surfactant adsorbed can be favorable or not in adsorption of the methylene blue due the different interactions dye-organoclays.