961 resultados para Sun: incompressible waves
Resumo:
Based on the two-dimensional coupled-wave theory, the wavefront conversion between cylindrical and plane waves by local volume holograms recorded at 632.8 nm and reconstructed at 800 nm is investigated. The proposed model can realize the 90 degrees holographic readout at a different readout wavelength. The analytical integral solutions for the amplitudes of the space harmonics of the field inside the transmission geometry are presented. The values of the off-Bragg parameter at the reconstructed process and the diffracted beam's amplitude distribution are analysed. In addition, the dependences of diffraction efficiency on the focal length of the recording cylindrical wave and on the geometrical dimensions of the grating are discussed. Furthermore, the focusing properties of this photorefractive holographic cylindrical lens are analysed.
Resumo:
The efficiency of utilisation of the sun's radiation by natural communities has not been properly demonstrated with what so far has been obtained of reliable values, and it represents a great interest in many respects. A systematic study of the biotic balance of lakes was done in the course of a succession of summers starting in 1932, extensive material was obtained, which permitted to compute a value fear the utilisation of the sun's radiation by plankton in lakes, and to compare this with corresponding values for marine plankton and terrestrial vegetation.
Resumo:
Three different categories of flow problems of a fluid containing small particles are being considered here. They are: (i) a fluid containing small, non-reacting particles (Parts I and II); (ii) a fluid containing reacting particles (Parts III and IV); and (iii) a fluid containing particles of two distinct sizes with collisions between two groups of particles (Part V).
Part I
A numerical solution is obtained for a fluid containing small particles flowing over an infinite disc rotating at a constant angular velocity. It is a boundary layer type flow, and the boundary layer thickness for the mixture is estimated. For large Reynolds number, the solution suggests the boundary layer approximation of a fluid-particle mixture by assuming W = Wp. The error introduced is consistent with the Prandtl’s boundary layer approximation. Outside the boundary layer, the flow field has to satisfy the “inviscid equation” in which the viscous stress terms are absent while the drag force between the particle cloud and the fluid is still important. Increase of particle concentration reduces the boundary layer thickness and the amount of mixture being transported outwardly is reduced. A new parameter, β = 1/Ω τv, is introduced which is also proportional to μ. The secondary flow of the particle cloud depends very much on β. For small values of β, the particle cloud velocity attains its maximum value on the surface of the disc, and for infinitely large values of β, both the radial and axial particle velocity components vanish on the surface of the disc.
Part II
The “inviscid” equation for a gas-particle mixture is linearized to describe the flow over a wavy wall. Corresponding to the Prandtl-Glauert equation for pure gas, a fourth order partial differential equation in terms of the velocity potential ϕ is obtained for the mixture. The solution is obtained for the flow over a periodic wavy wall. For equilibrium flows where λv and λT approach zero and frozen flows in which λv and λT become infinitely large, the flow problem is basically similar to that obtained by Ackeret for a pure gas. For finite values of λv and λT, all quantities except v are not in phase with the wavy wall. Thus the drag coefficient CD is present even in the subsonic case, and similarly, all quantities decay exponentially for supersonic flows. The phase shift and the attenuation factor increase for increasing particle concentration.
Part III
Using the boundary layer approximation, the initial development of the combustion zone between the laminar mixing of two parallel streams of oxidizing agent and small, solid, combustible particles suspended in an inert gas is investigated. For the special case when the two streams are moving at the same speed, a Green’s function exists for the differential equations describing first order gas temperature and oxidizer concentration. Solutions in terms of error functions and exponential integrals are obtained. Reactions occur within a relatively thin region of the order of λD. Thus, it seems advantageous in the general study of two-dimensional laminar flame problems to introduce a chemical boundary layer of thickness λD within which reactions take place. Outside this chemical boundary layer, the flow field corresponds to the ordinary fluid dynamics without chemical reaction.
Part IV
The shock wave structure in a condensing medium of small liquid droplets suspended in a homogeneous gas-vapor mixture consists of the conventional compressive wave followed by a relaxation region in which the particle cloud and gas mixture attain momentum and thermal equilibrium. Immediately following the compressive wave, the partial pressure corresponding to the vapor concentration in the gas mixture is higher than the vapor pressure of the liquid droplets and condensation sets in. Farther downstream of the shock, evaporation appears when the particle temperature is raised by the hot surrounding gas mixture. The thickness of the condensation region depends very much on the latent heat. For relatively high latent heat, the condensation zone is small compared with ɅD.
For solid particles suspended initially in an inert gas, the relaxation zone immediately following the compression wave consists of a region where the particle temperature is first being raised to its melting point. When the particles are totally melted as the particle temperature is further increased, evaporation of the particles also plays a role.
The equilibrium condition downstream of the shock can be calculated and is independent of the model of the particle-gas mixture interaction.
Part V
For a gas containing particles of two distinct sizes and satisfying certain conditions, momentum transfer due to collisions between the two groups of particles can be taken into consideration using the classical elastic spherical ball model. Both in the relatively simple problem of normal shock wave and the perturbation solutions for the nozzle flow, the transfer of momentum due to collisions which decreases the velocity difference between the two groups of particles is clearly demonstrated. The difference in temperature as compared with the collisionless case is quite negligible.
Resumo:
This study is concerned with some of the properties of roll waves that develop naturally from a turbulent uniform flow in a wide rectangular channel on a constant steep slope . The wave properties considered were depth at the wave crest, depth at the wave trough, wave period, and wave velocity . The primary focus was on the mean values and standard deviations of the crest depths and wave periods at a given station and how these quantities varied with distance along the channel.
The wave properties were measured in a laboratory channel in which roll waves developed naturally from a uniform flow . The Froude number F (F = un/√ghn, un = normal velocity , hn = normal depth, g =acceleration of gravity) ranged from 3. 4 to 6. 0 for channel slopes So of . 05 and . 12 respectively . In the initial phase of their development the roll waves appeared as small amplitude waves with a continuous water surface profile . These small amplitude waves subsequently developed into large amplitude shock waves. Shock waves were found to overtake and combine with other shock waves with the result that the crest depth of the combined wave was larger than the crest depths before the overtake. Once roll waves began to develop, the mean value of the crest depths hnmax increased with distance . Once the shock waves began to overtake, the mean wave period Tav increased approximately linearly with distance.
For a given Froude number and channel slope the observed quantities h-max/hn , T' (T' = So Tav √g/hn), and the standard deviations of h-max/hn and T', could be expressed as unique functions of l/hn (l = distance from beginning of channel) for the two-fold change in hn occurring in the observed flows . A given value of h-max/hn occurred at smaller values of l/hn as the Froude number was increased. For a given value of h /hh-max/hn the growth rate of δh-max/h-maxδl of the shock waves increased as the Froude number was increased.
A laboratory channel was also used to measure the wave properties of periodic permanent roll waves. For a given Froude number and channel slope the h-max/hn vs. T' relation did not agree with a theory in which the weight of the shock front was neglected. After the theory was modified to include this weight, the observed values of h-max/hn were within an average of 6.5 percent of the predicted values, and the maximum discrepancy was 13.5 percent.
For h-max/hn sufficiently large (h-max/hn > approximately 1.5) it was found that the h-max/hn vs. T' relation for natural roll waves was practically identical to the h-max/hn vs. T' relation for periodic permanent roll waves at the same Froude number and slope. As a result of this correspondence between periodic and natural roll waves, the growth rate δh-max/h-maxδl of shock waves was predicted to depend on the channel slope, and this slope dependence was observed in the experiments.
Resumo:
A large array has been used to investigate the P-wave velocity structure of the lower mantle. Linear array processing methods are reviewed and a method of nonlinear processing is presented. Phase velocities, travel times, and relative amplitudes of P waves have been measured with the large array at the Tonto Forest Seismological Observatory in Arizona for 125 earthquakes in the distance range of 30 to 100 degrees. Various models are assumed for the upper 771 km of the mantle and the Wiechert-Herglotz method applied to the phase velocity data to obtain a velocity depth structure for the lower mantle. The phase velocity data indicates the presence of a second-order discontinuity at a depth of 840 km, another at 1150 km, and less pronounced discontinuities at 1320, 1700 and 1950 km. Phase velocities beyond 85 degrees are interpreted in terms of a triplication of the phase velocity curve, and this results in a zone of almost constant velocity between depths of 2670 and 2800 km. Because of the uncertainty in the upper mantle assumptions, a final model cannot be proposed, but it appears that the lower mantle is more complicated than the standard models and there is good evidence for second-order discontinuities below a depth of 1000 km. A tentative lower bound of 2881 km can be placed on the depth to the core. The importance of checking the calculated velocity structure against independently measured travel times is pointed out. Comparisons are also made with observed PcP times and the agreement is good. The method of using measured values of the rate of change of amplitude with distances shows promising results.
Resumo:
In this thesis, a collection of novel numerical techniques culminating in a fast, parallel method for the direct numerical simulation of incompressible viscous flows around surfaces immersed in unbounded fluid domains is presented. At the core of all these techniques is the use of the fundamental solutions, or lattice Green’s functions, of discrete operators to solve inhomogeneous elliptic difference equations arising in the discretization of the three-dimensional incompressible Navier-Stokes equations on unbounded regular grids. In addition to automatically enforcing the natural free-space boundary conditions, these new lattice Green’s function techniques facilitate the implementation of robust staggered-Cartesian-grid flow solvers with efficient nodal distributions and fast multipole methods. The provable conservation and stability properties of the appropriately combined discretization and solution techniques ensure robust numerical solutions. Numerical experiments on thin vortex rings, low-aspect-ratio flat plates, and spheres are used verify the accuracy, physical fidelity, and computational efficiency of the present formulations.
Resumo:
New exact solutions of the (2 + 1)-dimensional double sine-Gordon equation are studied by introducing the modified mapping relations between the cubic nonlinear Klein-Gordon system and double sine-Gordon equation. Two arbitrary functions are included into the Jacobi elliptic function solutions. New doubly periodic wave solutions are obtained and displayed graphically by proper selections of the arbitrary functions.