832 resultados para Strength And Endurance Training
Resumo:
The aim of this study was to investigate the synergistic effects of endurance training and hypoxia on endurance performance in normoxic and hypoxic conditions (approximately 3000 m above sea level) as well as on lactate and glucose metabolism during prolonged exercise. For this purpose, 14 well-trained cyclists performed 12 training sessions in conditions of normobaric hypoxia (HYP group, n = 7) or normoxia (NOR group, n = 7) over 4 weeks. Before and after training, lactate and glucose turnover rates were measured by infusion of exogenous lactate and stable isotope tracers. Endurance performance was assessed during incremental tests performed in normoxia and hypoxia and a 40 km time trial performed in normoxia. After training, performance was similarly and significantly improved in the NOR and HYP groups (training, P < 0.001) in normoxic conditions. No further effect of hypoxic training was found on markers of endurance performance in hypoxia (training x hypoxia interaction, n.s.). In addition, training and hypoxia had no significant effect on lactate turnover rate. In contrast, there was a significant interaction of training and hypoxia (P < 0.05) on glucose metabolism, as follows: plasma insulin and glucose concentrations were significantly increased; glucose metabolic clearance rate was decreased; and the insulin to glucagon ratio was increased after training in the HYP group. In conclusion, our results show that, compared with training in normoxia, training in hypoxia has no further effect on endurance performance in both normoxic and hypoxic conditions or on lactate metabolic clearance rate. Additionally, these findings suggest that training in hypoxia impairs blood glucose regulation in endurance-trained subjects during exercise.
Resumo:
The aim of this study was to investigate the synergistic effects of endurance training and hypoxia on endurance performance in normoxic and hypoxic conditions (approximately 3000 m above sea level) as well as on lactate and glucose metabolism during prolonged exercise. For this purpose, 14 well-trained cyclists performed 12 training sessions in conditions of normobaric hypoxia (HYP group, n = 7) or normoxia (NOR group, n = 7) over 4 weeks. Before and after training, lactate and glucose turnover rates were measured by infusion of exogenous lactate and stable isotope tracers. Endurance performance was assessed during incremental tests performed in normoxia and hypoxia and a 40 km time trial performed in normoxia. After training, performance was similarly and significantly improved in the NOR and HYP groups (training, P < 0.001) in normoxic conditions. No further effect of hypoxic training was found on markers of endurance performance in hypoxia (training x hypoxia interaction, n.s.). In addition, training and hypoxia had no significant effect on lactate turnover rate. In contrast, there was a significant interaction of training and hypoxia (P < 0.05) on glucose metabolism, as follows: plasma insulin and glucose concentrations were significantly increased; glucose metabolic clearance rate was decreased; and the insulin to glucagon ratio was increased after training in the HYP group. In conclusion, our results show that, compared with training in normoxia, training in hypoxia has no further effect on endurance performance in both normoxic and hypoxic conditions or on lactate metabolic clearance rate. Additionally, these findings suggest that training in hypoxia impairs blood glucose regulation in endurance-trained subjects during exercise.
Resumo:
Competitive sports participation in youth is becoming increasingly more common in the Western world. It is widely accepted that sports participation, specifically endurance training, is beneficial for physical, psychomotor, and social development of children. The research on the effect of endurance training in children has focused mainly on healthrelated benefits and physiological adaptations, particularly on maximal oxygen uptake. However, corresponding research on neuromuscular adaptations to endurance training and the latter's possible effects on muscle strength in youth is lacking. In children and adults, resistance training can enhance strength and mcrease muscle activation. However, data on the effect of endurance training on strength and neuromuscular adaptations are limited. While some evidence exists demonstrating increased muscle activation and possibly increased strength in endurance athletes compared with untrained adults, the neuromuscular adaptations to endurance training in children have not been examined. Thus, the purpose of this study was to examine maximal isometric torque and rate of torque development (RID), along with the pattern of muscle activation during elbow and knee flexion and extension in muscle-endurancetrained and untrained men and boys. Subjects included 65 males: untrained boys (n=18), endurance-trained boys (n=12), untrained men (n=20) and endurance-trained men (n=15). Maximal isometric torque and rate of torque development were measured using an isokinetic dynamometer (Biodex III), and neuromuscular activation was assessed using surface electromyography (SEMG). Muscle strength and activation were assessed in the dominant arm and leg, in a cross-balanced fashion during elbow and knee flexion and extension. The main variables included peak torque (T), RTD, rate of muscle activation (Q30), Electro-mechanical delay (EMD), time to peak RTD and co-activation index. Age differences in T, RTD, electro-mechanical delay (EMD) and rate of muscle activation (Q30) were consistently observed in the four contractions tested. Additionally, Q30, nonnalized for peak EMG amplitude, was consistently higher in the endurancetrained men compared with untrained men. Co-activation index was generally low in all contractions. For example, during maximal voluntary isometric knee extension, men were stronger, had higher RTD and Q30, whether absolute or nonnalized values were used. Moreover, boys exhibited longer EMD (64.8 ± 18.5 ms vs. 56.6 ± 15.3 ms, for boys and men respectively) and time to peak RTD (112.4 ± 33.4 ms vs. 100.8 ± 39.1 ms for boys and men, respectively). In addition, endurance-trained men had lower T compared with untrained men, yet they also exhibited significantly higher nonnalized Q30 (1.9 ± 1.2 vs. 1.1 ± 0.7 for endurance-trained men and untrained men, respectively). No training effect was apparent in the boys. In conclusion, the findings demonstrate muscle strength and activation to be lower in children compared with adults, regardless of training status. The higher Q30 of the endurance-trained men suggests neural adaptations, similar to those expected in response to resistance training. The lower peak torque may su9gest a higher relative involvement oftype I muscle fibres in the endurance-trained athletes. Future research is required to better understand the effect of growth and development on muscle strength and activation patterns during dynamic and sub-maximal isometric contractions. Furthennore, training intervention studies could reveal the effects of endurance training during different developmental stages, as well as in different muscle groups.
Resumo:
Consuming low-fat milk (LFM) after resistance training leads to improvements in body composition. Habitual aerobic exercise and dairy intake are relatively easy lifestyle modifications that could benefit a population at risk for becoming obese. Thus, the purpose of this study was to investigate combining increased LFM intake with endurance exercise on body composition, blood-lipid profile and metabolic markers. 40 young males were randomized into four groups: one ingesting 750mL LFM immediately post-exercise, the other 6hrs post-exercise; and two isocaloric carbohydrate groups ingesting at the two different times. Participants completed a 12 week endurance-training program (cycling 1 hour/day at ~60%VO2peak, 5 days/week). 23 participants completed the study. Increases in lean mass (p < 0.05), and decreases in anti-inflammatory marker adiponectin (p < 0.05) were seen in all groups. No other significant changes were observed. Future analyses should focus on longer duration exercise and include a larger sample.
Resumo:
Most research on the effects of endurance training has focused on endurance training's health-related benefits and metabolic effects in both children and adults. The purpose of this study was to examine the neuromuscular effects of endurance training and to investigate whether they differ in children (9.0-12.9 years) and adults (18.4-35.6 years). Maximal isometric torque, rate of torque development (RTD), rate of muscle activation (Q30), electromechanical delay (EMD), and time to peak torque and peak RTD were determined by isokinetic dynamometry and surface electromyography (EMG) in elbow and knee flexion and extension. The subjects were 12 endurance-trained and 16 untrained boys, and 15 endurance-trained and 20 untrained men. The adults displayed consistently higher peak torque, RTD, and Q30, in both absolute and normalized values, whereas the boys had longer EMD (64.7+/-17.1 vs. 56.6+/-15.4 ms) and time to peak RTD (98.5+/-32.1 vs. 80.4+/-15.0 ms for boys and men, respectively). Q30, normalized for peak EMG amplitude, was the only observed training effect (1.95+/-1.16 vs. 1.10+/-0.67 ms for trained and untrained men, respectively). This effect could not be shown in the boys. The findings show normalized muscle strength and rate of activation to be lower in children compared with adults, regardless of training status. Because the observed higher Q30 values were not matched by corresponding higher performance measures in the trained men, the functional and discriminatory significance of Q30 remains unclear. Endurance training does not appear to affect muscle strength or rate of force development in either men or boys.
Resumo:
An increase in altitude leads to a proportional fall in the barometric pressure, and a decrease in atmospheric oxygen pressure, producing hypobaric hypoxia that affects, in different degrees, all body organs, systems and functions. The chronically reduced partial pressure of oxygen causes that individuals adapt and adjust to physiological stress. These adaptations are modulated by many factors, including the degree of hypoxia related to altitude, time of exposure, exercise intensity and individual conditions. It has been established that exposure to high altitude is an environmental stressor that elicits a response that contributes to many adjustments and adaptations that influence exercise capacity and endurance performance. These adaptations include in crease in hemoglobin concentration, ventilation, capillary density and tissue myoglobin concentration. However, a negative effect in strength and power is related to a decrease in muscle fiber size and body mass due to the decrease in the training intensity. Many researches aim at establishing how training or living at high altitudes affects performance in athletes. Training methods, such as living in high altitudes training low, and training high-living in low altitudes have been used to research the changes in the physical condition in athletes and how the physiological adaptations to hypoxia can enhanceperformance at sea level. This review analyzes the literature related to altitude training focused on how physiological adaptations to hypoxic environments influence performance, and which protocols are most frequently used to train in high altitudes.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The objective of this study was to compare the effect of different strength training protocols added to endurance training on running economy (RE). Sixteen well-trained runners (27.4 +/- 4.4 years; 62.7 +/- 4.3 kg; 166.1 +/- 5.0 cm), were randomized into two groups: explosive strength training (EST) (n = 9) and heavy weight strength training (HWT) (n = 7) group. They performed the following tests before and after 4 weeks of training: 1) incremental treadmill test to exhaustion to determine of peak oxygen uptake and the velocity corresponding to 3.5 mM of blood lactate concentration; 2) submaximal constant-intensity test to determine RE; 3) maximal countermovernent jump test and; 4) one repetition maximal strength test in leg press. After the training period, there was an improvement in RE only in the HWT group (HWT = 47.3 +/- 6.8 vs. 44.3 +/- 4.9 ml.kg(-1) -min(-1); EST = 46.4 +/- 4.1 vs. 45.5 +/- 4.1 ml.kg(-1) .min(-1)). In conclusion, a short period of traditional strength training can improve RE in well-trained runners, but this improvement can be dependent on the strength training characteristics. When comparing to explosive training performed in the same equipment, heavy weight training seems to be more efficient for the improvement of RE.
Resumo:
Papoti, M., L.E.B. Martins, S.A. Cunha, A.M. Zagatto, and C.A. Gobatto. Effects of taper on swimming force and swimmer performance after an experimental ten-week training program. J. Strength Cond. Res. 21(2):538-542. 2007.- The purpose of this research was to examine how an 11-day taper after an 8.5-week experimental training cycle affected lactate levels during maximal exercise, mean force, and performance in training swimmers, independent of shaving, psychological changes, and postcompetition effects. Fourteen competition swimmers with shaved legs and torsos were recruited from the São Paulo Aquatic Federation. The training cycle consisted of a basic training period (endurance and quality phases) of 8.5 weeks, with 5,800 m·d -1 mean training volume and 6 d·wk -1 frequency; and a taper period (TP) of 1.5 weeks' duration that incorporated a 48% reduction in weekly volume without altering intensity. Attained swimming force (SF) and maximal performance over 200m maximal swim (Pmax) before and after taper were measured. After taper, SF and Pmax improved 3.6 and 1.6%, respectively (p < 0.05). There were positive correlations (p < 0.05) between SF and Pmax before (r = 0.86) and after (r = 0.83) the taper phase. Peak lactate concentrations after SF were unaltered before (6.79 ± 1.2 mM) and after (7.15 ± 1.8 mM) TP. Results showed that TP improved mean swimming velocity, but not in the same proportion as force after taper, suggesting that there are other factors influencing performance in faster swimming. © 2007 National Strength & Conditioning Association.
Resumo:
Introduction. Physical activity can provide long-term benefits for systemic lupus erythematosus (SLE). Objective. This study sought to demonstrate the effects of progressive resistance training on the muscular strength, bone mineral density (BMD) and body composition of pre-menopausal women with SLE undergoing glucocorticoid (GC) treatment. Materials and Methods. This is the case report of a 43-year-old African-South American premenopausal woman with non-extensive SLE and low bone density. A six-month program with three bimonthly cycles of 70%, 80%, and 90% intensity according to the 10 maximum-repetition test was used. Dual-energy X-ray absorptiometry (DXA) was used to measure the BMD, T-scores and body composition, and indirect fluorescence was used to measure the levels of antinuclear antibodies. Student's t-test was used. Results. Statistical improvement was noted in all strength exercises, including the 45° leg press (Δ%=+50%, p<0.001) and knee extension (Δ%=+15%, p=0.003) to maintain the BMD of the L2-L4 lumbar (Δ%=+0.031%; p=0.46) as well as the trochanter (Δ%=+0.037%; p=0.31) and BMI (Δ%=-0.8, p=0.54). Conclusion. In this case study, the presented methodology had a positive effect on strength and contributed to the maintenance of BMD and body composition in a woman with SLE undergoing GC treatment. © 2012 Revista Andaluza de Medicina del Deporte.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background. The chronic obstructive pulmonary disease (COPD) is associated with the strength and resistance decreasing in addition to the dysfunction on autonomic nervous system (ANS). The aerobic training isolated or in association with the resistance training showed evidence of beneficial effects on an autonomic modulation of COPD; however, there are no studies addressing the effect of isolated resistance training.Aims. This study aims at investigating the influence of resistance training on an autonomic modulation through heart rate variability (HRV), functional capacity and muscle strength in individuals with COPD.Design. Clinical series study.Setting. Outpatients.Population. The study involved 13 individuals with COPD.Methods. The experimental protocol was composed by an initial and final evaluation that consisted in autonomic evaluations (HRV), cardiopulmonary functional capacity evaluation (6-minute walk test) and strength evaluation (dynamometry) in addition by the resistance training performed by 24 sessions lasted 60 minutes each one and on a frequency of three times a week. The intensity was determined initially with 60% of one maximum repetition and was progressively increased in each five sessions until 80%.Results. The HRV temporal and spectral indexes analysis demonstrates improvement of autonomic modulation, with significant statistical increases to sympathetic and parasympathetic components of ANS representing by SDNN, LF and HF. In addition, it was observed significant statistical increases to shoulder abduction and. knee flexion strength and functional capacity.Conclusion. The exclusive resistance training performed was able to positively influence the autonomic modulation; in addition it promoted benefits on cardiorespiratory functional capacity and strength benefits in individuals with COPD.Clinical Rehabilitation Impact. This study could contribute to clinical and professionals researchers that act with COPD, even though the resistance component of pulmonary rehabilitation presents consensual benefits on several healthy indicators parameters. There is no evidence about the effects on HRV before. Moreover, this study showed, on clinical practice, the HRV uses as an ANS activity on sinus node evaluation and highlights further importance on scientific context.
Resumo:
Changes in lipid profile are considered a risk factor for cardiovascular disease (CVD), especially in postmenopausal woman who have been associated with age-related loss of muscle mass. The beneficial role of aerobic exercise in the prevention of CVD has been well documented. However, the effect of strength training has not been established. The purpose of this study was to determine the changes of lipoprotein levels after 12 weeks of different volumes of strength training and its correlation with strength and muscle volume in postmenopausal women. The participants were randomized into three groups: low volume (LVST; n = 12, 1 set) and high volume of strength training (HVST; n = 11, 3 sets), or control group (n = 12). Training groups performed 12 weeks of supervised strength exercises, 15 maximum repetitions, five times a week, 20 minutes for LVST and 40 minutes for HVST for each training session. Measurements included body composition, strength and muscle volume, as well as blood analysis (glucose, total cholesterol, triglycerides, low-density lipoprotein, and high-density lipoprotein) pre- and post-training. The HVST and LVST improved the one-repetition maximum knee extension strength (p < 0.001), maximal dynamic strength (p < 0.001), and muscle volume (p = 0.048). Post-training triglyceride was lower in HVST when compared to LVST and the control group (p = 0.047). Even though they present the same neuromuscular and morphological adaptations in postmenopausal women, the HVST is more effective than LVST in improving the lipid profile of postmenopausal woman, and can be considered as an ideal program of intervention to reverse changes in lipid metabolism commonly found in this group. Copyright (C) 2014, The Society of Chinese Scholars on Exercise Physiology and Fitness. Published by Elsevier (Singapore) Pte Ltd. All rights reserved.
Resumo:
Barroso, R, Tricoli, V, dos Santos Gil, S, Ugrinowitsch, C, and Roschel, H. Maximal strength, number of repetitions, and total volume are differently affected by static-, ballistic-, and proprioceptive neuromuscular facilitation stretching. J Strength Cond Res 26(9): 2432-2437, 2012-Stretching exercises have been traditionally incorporated into warm-up routines before training sessions and sport events. However, the effects of stretching on maximal strength and strength endurance performance seem to depend on the type of stretching employed. The objective of this study was to compare the effects of static stretching (SS), ballistic stretching (BS), and proprioceptive neuromuscular facilitation (PNF) stretching on maximal strength, number of repetitions at a submaximal load, and total volume (i.e., number of repetitions 3 external load) in a multiple-set resistance training bout. Twelve strength-trained men (20.4 +/- 4.5 years, 67.9 +/- 6.3 kg, 173.3 +/- 8.5 cm) volunteered to participate in this study. All of the subjects completed 8 experimental sessions. Four experimental sessions were designed to test maximal strength in the leg press (i.e., 1 repetition maximum [1RM]) after each stretching condition (SS, BS, PNF, or no-stretching [NS]). During the other 4 sessions, the number of repetitions performed at 80% 1RM was assessed after each stretching condition. All of the stretching protocols significantly improved the range of motion in the sit-and-reach test when compared with NS. Further, PNF induced greater changes in the sit-and-reach test than BS did (4.7 +/- 1.6, 2.9 +/- 1.5, and 1.9 +/- 1.4 cm for PNF, SS, and BS, respectively). Leg press 1RM values were decreased only after the PNF condition (5.5%, p < 0.001). All the stretching protocols significantly reduced the number of repetitions (SS: 20.8%, p < 0.001; BS: 17.8%, p = 0.01; PNF: 22.7%, p < 0.001) and total volume (SS: 20.4%, p < 0.001; BS: 17.9%, p = 0.01; PNF: 22.4%, p < 0.001) when compared with NS. The results from this study suggest that, to avoid a decrease in both the number of repetitions and total volume, stretching exercises should not be performed before a resistance training session. Additionally, strength-trained individuals may experience reduced maximal dynamic strength after PNF stretching.
Resumo:
Hepatic insulin resistance is the major contributor to fasting hyperglycemia in type 2 diabetes. The protein kinase Akt plays a central role in the suppression of gluconeogenesis involving forkhead box O1 (Foxo1) and peroxisome proliferator-activated receptor gamma co-activator 1 alpha (PGC-1a), and in the control of glycogen synthesis involving the glycogen synthase kinase beta (GSK3 beta) in the liver. It has been demonstrated that endosomal adaptor protein APPL1 interacts with Akt and blocks the association of Akt with its endogenous inhibitor, tribbles-related protein 3 (TRB3), improving the action of insulin in the liver. Here, we demonstrated that chronic exercise increased the basal levels and insulin-induced Akt serine phosphorylation in the liver of diet-induced obese mice. Endurance training was able to increase APPL1 expression and the interaction between APPL1 and Akt. Conversely, training reduced both TRB3 expression and TRB3 and Akt association. The positive effects of exercise on insulin action are reinforced by our findings that showed that trained mice presented an increase in Foxo1 phosphorylation and Foxo1/PGC-1a association, which was accompanied by a reduction in gluconeogenic gene expressions (PEPCK and G6Pase). Finally, exercised animals demonstrated increased at basal and insulin-induced GSK3 beta phosphorylation levels and glycogen content at 24?h after the last session of exercise. Our findings demonstrate that exercise increases insulin action, at least in part, through the enhancement of APPL1 and the reduction of TRB3 expression in the liver of obese mice, independently of weight loss. J. Cell. Physiol. 227: 29172926, 2012. (C) 2011 Wiley Periodicals, Inc.