963 resultados para Stone, Crushed.
Evaporative Moisture Loss from Heterogeneous Stone: Material- Environment Interactions During Drying
Resumo:
The complexities of evaporation from structurally and mineralogically heterogeneous sandstone (Locharbriggs Sandstone) are investigated through a laboratory-based experiment in which a variety of environmental conditions are simulated. Data reported demonstrate the significance of material-environment interactions on the spatial and temporal variability of evaporative dynamics. Evaporation from porous stone is determined by the interplay between environmental, material and solution properties, which govern the rate and mode by which water is transmitted to, and subsequently removed from, an evaporating surface. Initially evaporation is marked by high rates of moisture loss controlled by external atmospheric conditions; then, when a critical level of surface moisture content is reached, hydraulic continuity between the stone surface and subsurface is disrupted and the drying front recedes
beneath the surface, evaporation rates decrease and are controlled by the ability of the material to transport water vapour to the surface. Pore size distribution and connectivity, as well as other material properties, control the timing of each stage of evaporation and the nature of the transition.
These experimental data highlight the complexity of evaporation, demonstrating that different regions of the same stone can exhibit varying moisture dynamics during drying and that the rate and nature of evaporative loss differs under different environmental conditions. The results identify the importance of material-environment interactions during drying and that stone micro-environmental conditions cannot be inferred from ambient data alone.
These data have significance for understanding the spatial distribution of stone surface weathering-related morphologies in both the natural and built environments where mineralogical and/or structural heterogeneity creates differences in moisture flux and hence variable drying rates. Such differences may provide a clearer explanation for the initiation and subsequent development of complex weathering responses where areas of significant deterioration can be found alongside areas that exhibit little or no evidence surface breakdown.
Resumo:
Temperature and moisture conditions are key drivers of stone weathering processes in both natural and built environments. Given their importance in the breakdown of stone, a detailed understanding of their temporal and spatial variability is central to understanding present-day weathering behaviour and for predicting how climate change may influence the nature and rates of future stone decay.
Subsurface temperature and moisture data are reported from quarry fresh Peakmoor Sandstone samples exposed during summer (June–July) and late autumn / early winter (October–December) in a mid-latitude, temperate maritime environment. These data demonstrate that the subsurface thermal response of sandstone comprises numerous short-term (minutes), low magnitude fluctuations superimposed upon larger-scale diurnal heating and cooling cycles with distinct aspect-related differences. The short-term fluctuations create conditions in the outer 5–10 mm of stone that are much more ‘energetic’ in comparison to the more subdued thermal cycling that occurs deeper within the sandstone samples.
Data show that moisture dynamics are equally complex with a near-surface region (5–10 mm) in which frequent moisture cycling takes place and this, combined with the thermal dynamism exhibited by the same region may have significant implications for the nature and rate of weathering activity. Data indicate that moisture input from rainfall, particularly when it is wind-driven, can travel deep into the stone where it can prolong the time of wetness. This most often occurs during wetter winter months when moisture input is high and evaporative loss is low but can happen at any time during the year when the hydraulic connection between near-surface and deeper regions of the stone is disrupted with subsequent loss of moisture from depth slowing as it becomes reliant on vapour diffusion alone.
These data illustrate the complexity of temperature and moisture conditions in sandstone exposed to the ‘moderate’ conditions of a temperate maritime environment. They highlight differences in thermal and moisture cycling between near-surface (5–10 mm) and deeper regions within the stone and contribute towards a better understanding of the development of structural and mineralogical heterogeneity between the stone surface and substrate.
Resumo:
A second-season makeover at the 1964-1965 New York World's Fair. Hoping that "an interesting controversy" would revive the state of Minnesota's failing pavilion, Minnesota adds a large fiberglass Viking, longboat-styled snack bars, and the contested Kensington Runestone itself to its 'Brainpower Builds Profits' exhibit. [abstract adapted from Minnesota History 63/1]
Resumo:
(a) Iowa has a total of 101,620 miles of rural roads, both primary and secondary. (b) On January 1, 1951, a total of 68,869 miles of these rural roads were surfaced - mostly with gravel and crushed stone. (c) Additional roads are being surfaced at the rate of 2676 miles per year. (d) Iowa's highway program provides for a surfaced road to every reasonably located rural home and a paved or other type of dustless surface on all primary roads. (e) Iowa's highway funds come 26.0 per cent from property taxes, 63.5 per cent from road use taxes, 10.5 per cent from Federal aid. (f) Annual income under present laws, available for highway construction, is approximately For primary roads ----------------- $24,000,000 For secondary roads---------------- $41,967,000 (g) Iowa's highway improvements are being paid for as built. No new bonds are being issued. (h) Unobligated available farm to market road funds are rapidly being placed under contract. (i) The letting of highway contracts is increasing rapidly. (j)- Iowa's highway program is estimated to cost $945,000,000 and will require twenty years to build. These are the highlights of Iowa's highway program. The details will follow in succeeding paragraphs.
Resumo:
(a) Iowa has a total of 101,620 miles of rural roads, both primary and secondary. (b) On January 1, 1952, a total of 71,493 miles of these rural roads were surfaced - mostly with gravel and crushed stone. (c) Additional roads are being surfaced at the rate of 2662 miles per year. (d) Iowa's highway program provides for a surfaced road to every reasonably located rural home and a paved or other type of dustless surface on all primary roads. (e) Iowa's highway funds come 26.0 per cent from property taxes, 63.5 per cent from road use taxes, 10.5 per cent from Federal aid. (f) Annual income under present laws, available for highway construction, is approximately For primary roads------------------$23,000,000 For secondary roads---------------- 41,967,000 (g) Iowa's highway improvements are being paid for as built. No new bonds are being issued. (h) The surplus of farm to market road funds created during and immediately following the War have now been placed under contract, with only a minimum working balance remaining in the fund. (i) Iowa's highway program was estimated to cost $945,000,000 and to require twenty years to build, by the 1948 Legislative Committee. This estimate would now have to be increased due to price increases and higher required standards. These are the highlights of Iowa's highway program. The details will follow in succeeding paragraphs.
Resumo:
(a) Iowa has a total of 101,451 miles of rural roads, both primary and secondary. (b) On January 1, l954, a total of 77,024 miles of these rural roads were surfaced - mostly with gravel and crushed stone. This is 5,53l miles greater than on January l, 1952. (c) Additional roads are being surfaced at the rate of 2766 miles per year. (d) Iowa's highway program provides for a surfaced road to every reasonably located rural home and a paved or other type of dustless surface on all primary roads. (e) Iowa's highway funds come 25.4 per cent from property taxes and special taxes......................................$29,708,546.67 63.7 per cent from road use taxes.......... 74,581,080.30 10.6 per cent from Federal Aid (1952 Act).. 12,424,000.00 0.3 per cent from miscellaneous receipts.. 287,922.86 ---- ------------- 100.0 $117,001,549.83 (f) Annual income under present laws, available for highway construction, is approximately, For primary roads $29,420,000.00 For secondary roads $44,328,000.00 In 19_3, $7,299,000 of secondary road construction funds was transferred to the maintenance fund. (g) Iowa's highway improvements are being paid for as built. No new bonds are being issued.
Resumo:
Behavior of granular material subjected to repeated load triaxial compression tests is characterized by a model based on rate process theory. Starting with the Arrhenius equation from chemical kinetics, the relationship of temperature, shear stress, normal stress and volume change to deformation rate is developed. The proposed model equation includes these factors as a product of exponential terms. An empirical relationship between deformation and the cube root of the number of stress applications at constant temperature and normal stress is combined with the rate equation to yield an integrated relationship of temperature, deviator stress, confining pressure and number of deviator stress applications to axial strain. The experimental program consists of 64 repeated load triaxial compression tests, 52 on untreated crushed stone and 12 on the same crushed stone material treated with 4% asphalt cement. Results were analyzed with multiple linear regression techniques and show substantial agreement with the model equations. Experimental results fit the rate equation somewhat better than the integrated equation when all variable quantities are considered. The coefficient of shear temperature gives the activation enthalpy, which is about 4.7 kilocalories/mole for untreated material and 39.4 kilocalories/mole for asphalt-treated material. This indicates the activation enthalpy is about that of the pore fluid. The proportionality coefficient of deviator stress may be used to measure flow unit volume. The volumes thus determined for untreated and asphalt-treated material are not substantially different. This may be coincidental since comparison with flow unit volumes reported by others indicates flow unit volume is related to gradation of untreated material. The flow unit volume of asphalt-treated material may relate to asphalt cement content. The proposed model equations provide a more rational basis for further studies of factors affecting deformation of granular materials under stress similar to that in pavement subjected to transient traffic loads.
Resumo:
Research activities during this period concentrated on continuation of field and laboratory testing for the Dallas County test road. Stationary ditch collection of dust was eliminated because of inconsistent data, and because of vandalism to collectors. Braking tests were developed and initiated to evaluate the influence of treatments on braking and safety characteristics of the test sections. Dust testing was initiated for out of the wheelpath conditions as well as in the wheelpath. Contrary to the results obtained during the summer and fall of 1987, the 1.5 percent bentonite treatment appears to be outperforming the other bentonite treated sections after over a year of service. Overall dust reduction appears to average between 25 to 35 percent. Dallas County applied 300 tons per mile of class A roadstone maintenance surfacing to the test road in August 1988. Test data indicates that the bentonite is capable of interacting and functioning to reduce dust generation of the new surfacing material. Again, the 1.5 percent bentonite treatment appeared the most effective. The fine particulate bonding and aggregation mechanism of the bentonite appears recoverable from the environmental effects of winter, and from alternating wet and dry road surface conditions. The magnesium chloride treatment appears capable of long-term (over one year) dust reduction and exhibited an overall average reduction in the range of 15 to 30 percent. The magnesium chloride treatment also appears capable of interacting with newly applied crushed stone to reduce dust generation. Two additional one mile test roads were to have been constructed early this year. Due to an extremely dry spring and summer, construction scheduling was not possible until August. This would have allowed only minimal data collection. Considering this and the fact that this was an atypically dry summer, it was our opinion that it would be in the best interest of the research project to extend the project (at no additional cost) for a period of one year. The two additional test roads will be constructed in early spring 1989 in Adair and Marion counties.
Resumo:
This report concerns the stabilization of three crushed limestones by an ss-1 asphalt emulsion and an asphalt cement, 120-150 penetration. Stabilization is evaluated by marshall stability and triaxial shear tests. Test specimens were compacted by the marshall, standard proctor and vibratory methods. Stabilization is evaluated primarily by triaxial shear tests in which confining pressures of 0 to 80 psi were used. Data were obtained on the angle of internal friction, cohesion, volume change, pore water pressure and strain characteristics of the treated and untreated aggregates. The MOHR envelope, bureau of reclamation and modified stress path methods were used to determine shear strength parameters at failure. Several significant conclusions developed by the authors are as follows: (1) the values for effective angle of internal friction and effective cohesion were substantially independent of asphalt content, (2) straight line MOHR envelopes of failure were observed for all treated stones, (3) bituminous admixtures did little to improve volume change (deformation due to load) characteristics of the three crushed limestones, (4) with respect to pore water characteristics (pore pressures and suctions due to lateral loading), bituminous treatment notably improved only the bedford stone, and (5) at low lateral pressures bituminous treatments increased stability by limiting axial strain. This would reduce rutting of highway bases. At high lateral pressures treated stone was less stable than untreated stone.
Resumo:
This publication constitutes the fruits of National Science Centre research projects (grant no 2011/01/M/HS3/02142 – 6 articles) and the National Programme for the Development of the Humanities (grant no 0108/NPH3/H12/82/2014 – 3 articles). We would like to acknowledge and at the same time express our sincere gratitude for the generosity shown by the following at the Adam Mickiewicz University in making this publication possible: the Dean of the Department of History, Institute of Pre-history and the Eastern Institute.
Resumo:
Tämä tutkielma käsittelee Jeanette Wintersonin romaania The Stone Gods. Tutkielma käyttää keskeisenä teoreettisena kontekstinaan posthumanistisen ajattelua. Wintersonin romaani on science fictionia, se kuvaa erilaisia tulevaisuudenkuvia. Tutkielma ei tarkastele teosta ensisijaisesti tieteiskirjallisuutena, mutta hyödyntää alan tutkimuksen käsitteistöä, erityisesti Darko Suvinin novumin käsitettä teoksen narratiivisen fokuksen paikantamisessa. Teos käsittelee monipuolisesti ihmisyyttä ja ihmisen käsitettä suhteessa niin ei-inhimillisiin eläimiin kuin mekaanisiin entiteetteihin, robotteihin. Teos on vahvasti kriittinen erityisesti valistuksen ajattelua ja rationaalisen ihmissubjektin käsitteitä kohtaan. Tutkielma käsittelee teoksen kuvaamia maailmoja, niiden yhteiskuntia ja ajatusmaailmoja näistä näkökulmista. Keskeiseksi tutkimuskysymykseksi nousee ihmisyyden määrittelyn vaikeus ja kriittistä tarkastelua kestämättömät raja-aidat. Tutkielma toteaa, että teos maalaa kokonaisuudessaan varsin lohduttoman kuvan ihmiskunnan mahdollisuuksista selviytyä ja pitää kiinni elävästä ja hyvinvoivasta planeetasta, mikäli ajattelutapoihin ei tule merkittävää muutosta. The Stone Gods edustaa tieteiskirjallisuuden piirissä “Jos tämä kehitys jatkuu” -tarinoiden perinnettä. Vaikka teksti on paljon tämän päivän tieteen ulottumattomissa olevia tai jopa mahdottomia asioita, antaa teos välineitä myös tämän päivän ongelmien käsittelyyn.
Resumo:
The sharp consumption of natural resources by the construction industry has motivated numerous studies concerning the application of waste to replace partially or fully, some materials, such as aggregates, thereby reducing the environmental impact caused by the extraction of sand and crushing process. The application of stone dust from crushing process arising as an aggregate for the production of Portland cement concrete is a viable alternative in view of the high cost of natural sands, in addition to the environmental damage which causes its operation to the environment. The stone dust has reduced cost compared to natural sand because it is produced in the beds of their own quarries, which are usually located close to major urban centers. This study examined the feasibility of using stone dust from the crushing of rock gneisses in the state of Bahia, replacing natural quartz sand. In the development of scientific study was conducted to characterize physical and chemical raw materials applied and molded cylindrical specimens , using as reference values Fck 20, Fck 25 and Fck 30 MPa ( resistance characteristic of the concrete after 28 days) in following compositions stone powder: 10%, 30%, 50 %, 100% and 100% with additive. The specimens were cured and subjected to the tests of compressive strength and water absorption, then the samples were subjected to the tests of X-ray diffraction and scanning electron microscopy. The results obtained showed that the composition with 10% stone powder showed the best results regarding the physical and mechanical tests performed, confirming the reduction in compressive strength and increased water uptake increased as the content of the powder stone in the concrete composition