930 resultados para Spot sizes
Resumo:
Todas las mujeres, no importa su edad ni condición, tienen derecho a recibir una atención integral y humanizada frente a una situación de embarazo
Resumo:
yResults of 13 field investigations between 1966 and 1990 of the southwestern to eastern margin of Kötlujökull and its proglacial area are summarized with respect to sandar and their formation. Generally, the results are based on sedimentological examinations in the field and laboratory, on analyses of aerial photographs, and investigations of the glacier slope. The methods permitted a more detailed reconstruction of sandar evolution in the proglacial area of Kötlujökull since 1945, of tendencies in development and of single data going back until the last decades of the 19th century. Accordingly, there existed special periods of "flachsander"-formations with raised coarsegrained "sanderwurzels" resultant from the outbreak of subglacial meltwater tunneloutlets and other periods with "hochsander-"formations by supraglacial drainage. At present the belts of hochsanders in front of the glacier come up to more than 4 m in thickness and 1000 m in width, therefore containing perhaps more sediment direct in front of Kötlujökull than the old belts of flachsanderwurzels. In one case the explosion-like subglacial meltwater outburst combined with the genesis of a sanderwurzel could be observed for a time and is thoroughly discussed. The event is referred to the outburst of a sub- to inglacial meltwater body being under extreme hydrostatic press ures which is combined with the genesis of a new subglacial tunneloutlet as a new flachsander. Often these outbursts led to the destruction of a morainic belt more than 1000 m in width. Presumably the whole event was finished in not more than a few days. In addition to a characteristic pear-shaped form and water-moved stones up to diameters of 1 m the wurzels possess a single "main-channel" with rectangular cross-sections as far as 4 m deep and 50 m wide just as small flat channels resembling fish bones in connection with the main channel. Presumably, they have been active only in the last stage of wurzel formation. With regard to the subglacial tunnel gates long-living L-meltwater outlets are distinguished from short-living K-meltwater outlets. These are always combined with a raised coarse-grained sanderwurzel, but its meltwater discharge is generally decreasing and ceases after some years, whereas the discharge of L-meltwater outlets continues unchanged for long times (except seasonal differences). The material of flachsanders is preponderantly composed of mugearitic and andesitic cobble extending at least for some kilometres from the glacier margin, whereas the hochsanders correspond to medium to coarse sands without clay and without alternations into the direction of flow. The hochsander fans are covered with small braidet channels. Their sedimentary structures are determined by the short time changing of supraglacial meltwater discharge and the upper flow regime combined with the development of antidunes, which rule the channel-flows during the main activity periods in summer. Unlike the subglacial drainage the supraglacial drainage led to only weak effects of erosion on the glacier foreland. So the hochsanders refilled depressions of morainic areas or grew up on older flachsanderwurzels. Whereas all large flachsanders developed in front of approximate stationary glacier margins, the evolution of coherent belts of hochsanders were combined with progressive glacier fronts. On the other hand, there was obviously no evolution at all of large sandar in front of back-melting margins of Kötlujökull. Based on examinations of the glacier surface and on analyses of aerial photographs the different types of sandar are referred to different structures of the glacier snout. Finally chances of surviving of sandar in the proglacial area of Kötlujökull are shortly discussed just as the possibility of an application of the Islandic research results on Pleistocene sandar in northern Germany.
Resumo:
Twenty-seven samples from the Leg 83 section of Hole 504B have been investigated using magnetic, optical, and electron optical methods. The primary magnetic mineral to crystallize was titanomagnetite of approximate composition Fe2.4Ti0.6O4 (TM60), but none survives, nor is there evidence of titanomaghemite produced by oxidation of TM60. The average measured magnetic properties can be interpreted in terms of magnetite, Fe3O4, having average grain size of <1 µm and present in average volume concentration of - 0.5%. The intensity of the natural remanent magnetization (NRM) of the rocks could also be accounted for as being a thermoremanence carried by this mineral. Although the heterogeneity of the titanomagnetite grains could be detected optically, the texture of the intergrown phases is poorly developed. In some samples from the massive units of the lower part of the section, trellis patterns were visible. The Fe3O4 present in the intergrowths is too intimately mixed with the other intergrown phases to be revealed by electron microprobe analysis that simply returns the bulk composition of the intergrowth (oxidized TM60). The path by which the mineral assemblage evolved from TM60 to an Fe304-containing intergrowth, under the temperature and pressure conditions obtaining in the Leg 83 section, makes interesting speculation. Deuteric oxidation, maghemitization/inversion, or some hypothetical low-temperature/high-pressure oxidation by a leaching-of-iron process may all play roles.