976 resultados para Sports science
Resumo:
The aim of this study was to evaluate and compare the efficacy of different remobilization protocols in different skeletal muscles considering the changes induced by hindlimb suspension of the tail. Thirty-six female Wistar rats were divided into six groups: control I, control II, suspended, suspended free, suspended trained on a declined treadmill and suspended trained on a flat treadmill. Fragments of soleus and tibialis anterior (TA) muscle were frozen and processed by different histochemical methods. The suspended soleus showed a significant increase in the proportional number of intermediate/hybrid fibers and a decrease in the number of type I fibers. Some of these changes proved to be reversible after remobilization. The three remobilization programs led to the recovery of both the proportional number of fibers and their size. The TA muscle presented a significant increase in the number and size of type I fibers and a cell size reduction of type IIB fibers, which were recovered after training on a declined treadmill and free movement. Especially regarding the soleus, the present findings indicate that, among the protocols, training on a declined treadmill was found to induce changes of a more regenerative nature, seemingly indicating a better tissue restructuring after the suspension procedure.
Resumo:
Purposes: There is evidence that the risk of colon cancer is reduced by appropriate levels of physical exercise. Nevertheless, the mechanisms involved in this protective effect of exercise remain largely unknown. Inflammation is emerging as a unifying link between a range of environment exposures and neoplastic risk. The carcinogen dimethyl-hydrazine (DMH) induces an increase in epithelial cell proliferation and in the expression of the inflammation-related enzyme cyclooxigenase-2 (COX-2) in the colon of rats. Our aim was to verify whether these events could be attenuated by exercise. Methods: Four groups of eight Wistar rats were used in the experiment. The groups G1 and G3 were sedentary (controls), and the groups G2 and G4 were submitted to 8 wk of swimming training, 5 d wk(-1). The groups G3 and G4 were given subcutaneous injections of DMH immediately after the exercise protocols. Fifteen days after the neoplasic induction, the rats were sacrificed and the colon was processed for histological examination and immunohistochemistry staining of proliferating cell nuclear antigen (PCNA) and COX-2. Results: We found a significant increase in the PCNA-labeling index in both DMH-treated groups of rats. However, this increase was significantly attenuated in the training group G4 (P < 0.01). Similar results were observed in relation to the COX-2 expression. Conclusions: From our findings, we conclude that exercise training exerts remarkable antiproliferative and antiinflammatory effects in the rat colonic mucosa, suggesting that this may be an important mechanism to explain how exercise protects against colonic cancer.
Resumo:
ESTEVES, A. M., M. T. DE MELLO, M. PRADELLA-HALLINAN, and S. TUFIK. Effect of Acute and Chronic Physical Exercise on Patients with Periodic Leg Movements. Med. Sci. Sports Exerc., Vol. 41, No. 1,. pp. 237-242, 2009. Purpose: Nonpharmacological interventions may lead to an improvement in sleep quality. The objective of our study was to evaluate the effects of acute intensive exercise and chronic exercise on sleep patterns in patients with periodic leg movements (PLM). Methods: The study involved acute and chronic exercise. The acute intensive exercise group consisted of 22 volunteers who underwent a maximum effort test and a polysomnography (PSG) on the same night. The chronic exercise group included. 11 patients who performed 72 physical training sessions undergoing three PSG studies on the night of sessions 1, 36, and 72. Blood samples were collected from both acute and chronic groups for beta-endorphin dosage. Results: Our results showed that both forms of physical exercise lowered PLM levels. The acute physical exercise increased sleep efficiency, rapid eye movement (REM) sleep, and reduced wake after sleep onset, whereas the chronic physical exercise increased sleep efficiency, REM sleep, and reduced sleep latency. We also found a significant negative correlation between beta-endorphin release after acute intensive exercise and PLM levels (r = -0.63). Conclusion: Physical exercise may improve sleep patterns and reduce PLM levels. The correlation between beta-endorphin release after acute intensive exercise and PLM levels might be associated with the impact physical exercise has on the opiodergic system. We suggest that physical exercise may be a useful nonpharmacological treatment for PLM.
Three planning options for the Yam Island Sports Pavilion, prepared for Yam Island Community Council