994 resultados para Space Weather
Resumo:
A forest of quadtrees is a refinement of a quadtree data structure that is used to represent planar regions. A forest of quadtrees provides space savings over regular quadtrees by concentrating vital information. The paper presents some of the properties of a forest of quadtrees and studies the storage requirements for the case in which a single 2m × 2m region is equally likely to occur in any position within a 2n × 2n image. Space and time efficiency are investigated for the forest-of-quadtrees representation as compared with the quadtree representation for various cases.
Resumo:
Fluid bed granulation is a key pharmaceutical process which improves many of the powder properties for tablet compression. Dry mixing, wetting and drying phases are included in the fluid bed granulation process. Granules of high quality can be obtained by understanding and controlling the critical process parameters by timely measurements. Physical process measurements and particle size data of a fluid bed granulator that are analysed in an integrated manner are included in process analytical technologies (PAT). Recent regulatory guidelines strongly encourage the pharmaceutical industry to apply scientific and risk management approaches to the development of a product and its manufacturing process. The aim of this study was to utilise PAT tools to increase the process understanding of fluid bed granulation and drying. Inlet air humidity levels and granulation liquid feed affect powder moisture during fluid bed granulation. Moisture influences on many process, granule and tablet qualities. The approach in this thesis was to identify sources of variation that are mainly related to moisture. The aim was to determine correlations and relationships, and utilise the PAT and design space concepts for the fluid bed granulation and drying. Monitoring the material behaviour in a fluidised bed has traditionally relied on the observational ability and experience of an operator. There has been a lack of good criteria for characterising material behaviour during spraying and drying phases, even though the entire performance of a process and end product quality are dependent on it. The granules were produced in an instrumented bench-scale Glatt WSG5 fluid bed granulator. The effect of inlet air humidity and granulation liquid feed on the temperature measurements at different locations of a fluid bed granulator system were determined. This revealed dynamic changes in the measurements and enabled finding the most optimal sites for process control. The moisture originating from the granulation liquid and inlet air affected the temperature of the mass and pressure difference over granules. Moreover, the effects of inlet air humidity and granulation liquid feed rate on granule size were evaluated and compensatory techniques used to optimize particle size. Various end-point indication techniques of drying were compared. The ∆T method, which is based on thermodynamic principles, eliminated the effects of humidity variations and resulted in the most precise estimation of the drying end-point. The influence of fluidisation behaviour on drying end-point detection was determined. The feasibility of the ∆T method and thus the similarities of end-point moisture contents were found to be dependent on the variation in fluidisation between manufacturing batches. A novel parameter that describes behaviour of material in a fluid bed was developed. Flow rate of the process air and turbine fan speed were used to calculate this parameter and it was compared to the fluidisation behaviour and the particle size results. The design space process trajectories for smooth fluidisation based on the fluidisation parameters were determined. With this design space it is possible to avoid excessive fluidisation and improper fluidisation and bed collapse. Furthermore, various process phenomena and failure modes were observed with the in-line particle size analyser. Both rapid increase and a decrease in granule size could be monitored in a timely manner. The fluidisation parameter and the pressure difference over filters were also discovered to express particle size when the granules had been formed. The various physical parameters evaluated in this thesis give valuable information of fluid bed process performance and increase the process understanding.
Resumo:
The specific objective of this paper is to develop a state space model of a tubular ammonia reactor which is the heart of an ammonia plant in a fertiliser complex. A ninth order model with three control inputs and two disturbance inputs is generated from the nonlinear distributed model using linearization and lumping approximations. The lumped model is chosen such that the steady state temperature at the exit of the catalyst bed computed from the simplified state space model is close enough to the one computed from the nonlinear steady state model. The model developed in this paper is very useful for the design of continuous/discrete versions of single variable/multivariable control algorithms.
Resumo:
The properties of the manifold of a Lie groupG, fibered by the cosets of a sub-groupH, are exploited to obtain a geometrical description of gauge theories in space-timeG/H. Gauge potentials and matter fields are pullbacks of equivariant fields onG. Our concept of a connection is more restricted than that in the similar scheme of Ne'eman and Regge, so that its degrees of freedom are just those of a set of gauge potentials forG, onG/H, with no redundant components. The ldquotranslationalrdquo gauge potentials give rise in a natural way to a nonsingular tetrad onG/H. The underlying groupG to be gauged is the groupG of left translations on the manifoldG and is associated with a ldquotrivialrdquo connection, namely the Maurer-Cartan form. Gauge transformations are all those diffeomorphisms onG that preserve the fiber-bundle structure.
Resumo:
This paper proposes a multilevel inverter configuration which produces a hexagonal voltage space vector structure in the lower modulation region and a 12-sided polygonal space vector structure in the overmodulation region. A conventional multilevel inverter produces 6n plusmn 1 (n = odd) harmonics in the phase voltage during overmodulation and in the extreme square-wave mode of operation. However, this inverter produces a 12-sided polygonal space vector location, leading to the elimination of 6n plusmn 1 (n = odd) harmonics in the overmodulation region extending to a final 12-step mode of operation with a smooth transition. The benefits of this arrangement are lower losses and reduced torque pulsation in an induction motor drive fed from this converter at higher modulation indexes. The inverter is fabricated by using three conventional cascaded two-level inverters with asymmetric dc-bus voltages. A comparative simulation study of the harmonic distortion in the phase voltage and associated losses in conventional multilevel inverters and that of the proposed inverter is presented in this paper. Experimental validation on a prototype shows that the proposed converter is suitable for high-power applications because of low harmonic distortion and low losses.
Resumo:
Space in musical semiosis is a study of musical meaning, spatiality and composition. Earlier studies on musical composition have not adequately treated the problems of musical signification. Here, composition is considered an epitomic process of musical signification. Hence the core problems of composition theory are core problems of musical semiotics. The study employs a framework of naturalist pragmatism, based on C. S. Peirce’s philosophy. It operates on concepts such as subject, experience, mind and inquiry, and incorporates relevant ideas of Aristotle, Peirce and John Dewey into a synthetic view of esthetic, practic, and semiotic for the benefit of grasping musical signification process as a case of semiosis in general. Based on expert accounts, music is depicted as real, communicative, representational, useful, embodied and non-arbitrary. These describe how music and the musical composition process are mental processes. Peirce’s theories are combined with current morphological theories of cognition into a view of mind, in which space is central. This requires an analysis of space, and the acceptance of a relativist understanding of spatiality. This approach to signification suggests that mental processes are spatially embodied, by virtue of hard facts of the world, literal representations of objects, as well as primary and complex metaphors each sharing identities of spatial structures. Consequently, music and the musical composition process are spatially embodied. Composing music appears as a process of constructing metaphors—as a praxis of shaping and reshaping features of sound, representable from simple quality dimensions to complex domains. In principle, any conceptual space, metaphorical or literal, may set off and steer elaboration, depending on the practical bearings on the habits of feeling, thinking and action, induced in musical communication. In this sense, it is evident that music helps us to reorganize our habits of feeling, thinking, and action. These habits, in turn, constitute our existence. The combination of Peirce and morphological approaches to cognition serves well for understanding musical and general signification. It appears both possible and worthwhile to address a variety of issues central to musicological inquiry in the framework of naturalist pragmatism. The study may also contribute to the development of Peircean semiotics.
Resumo:
Mould growth in field crops or stored grain reduces starch and lipid content, with consequent increases in fibre, and an overall reduction in digestible energy; palatability is often adversely affected. If these factors are allowed for, and mycotoxin concentrations are low, there are sound economic reasons for using this cheaper grain. Mycotoxins are common in stock feed but their effects on animal productivity are usually slight because either the concentration is too low or the animal is tolerant to the toxin. In Australia, aflatoxins occur in peanut by-products and in maize and sorghum if the grain is moist when stored. Zearalenone is found in maize and in sorghum and wheat in wetter regions. Nivalenol and deoxynivalenol are found in maize and wheat but at concentrations that rarely affect pigs, with chickens and cattle being even more tolerant. Other mycotoxins including cyclopiazonic acid, T-2 toxin, cytochalasins and tenuazonic acid are produced by Australian fungi in culture but are not found to be significant grain contaminants. Extremely mouldy sorghum containing Alternaria and Fusarium mycotoxins decreased feed conversion in pigs and chickens by up to 14%. However, E moniliforme- and Diplodia maydis-infected maize produced only slight reductions in feed intake by pigs and Ustilago- infected barley produced no ill effects. Use of these grains would substantially increase profits if the grain can be purchased cheaply.
Resumo:
A survey for various mycotoxins was carried out on samples of all wheat delivered to nine storage and marketing depots in south-eastern Queensland, selected as most likely to receive mycotoxin-contaminated grain. All wheat was surveyed during 1983, when the degree of weather damage was high. Samples of the poorest grade of wheat from these depots were also surveyed in 1984 and 1985. The surveys included all regions where head scab of wheat caused by Fusariurn graminearurn Schwabe Group 2 had been reported to occur at significant levels. 4-Deoxynivalenol was detected in nearly all pooled samples representing bulk wheat at concentrations ranging from traces of <0.01 up to 1.7 mg kg-1. The highest concentration of zearlenone detected in a pooled wheat sample was 0.04 mg kg-1. In a few samples representing individual wheat deliveries and with up to 2.8% by weight of pink grains, 4-deoxynivalenol concentrations ranged up to 11.7 mg kg-' and zearalenone up to 0.43 mg kg-l. Aflatoxins B,, B2, G1 and G2 were detected in only one pooled sample of wheat, at a total aflatoxin concentration of 0.003 mg kg-'. Ochratoxin A, sterigmatocystin and T-2 toxin were not detected. Higher concentrations of mycotoxins were found in the poorer grades of wheat.
Resumo:
A comparison is made of the performance of a weather Doppler radar with a staggered pulse repetition time and a radar with a random (but known) phase. As a standard for this comparison, the specifications of the forthcoming next generation weather radar (NEXRAD) are used. A statistical analysis of the spectral momentestimates for the staggered scheme is developed, and a theoretical expression for the signal-to-noise ratio due to recohering-filteringrecohering for the random phase radar is obtained. Algorithms for assignment of correct ranges to pertinent spectral moments for both techniques are presented.
Resumo:
In this paper, we generalize the existing rate-one space frequency (SF) and space-time frequency (STF) code constructions. The objective of this exercise is to provide a systematic design of full-diversity STF codes with high coding gain. Under this generalization, STF codes are formulated as linear transformations of data. Conditions on these linear transforms are then derived so that the resulting STF codes achieve full diversity and high coding gain with a moderate decoding complexity. Many of these conditions involve channel parameters like delay profile (DP) and temporal correlation. When these quantities are not available at the transmitter, design of codes that exploit full diversity on channels with arbitrary DIP and temporal correlation is considered. Complete characterization of a class of such robust codes is provided and their bit error rate (BER) performance is evaluated. On the other hand, when channel DIP and temporal correlation are available at the transmitter, linear transforms are optimized to maximize the coding gain of full-diversity STF codes. BER performance of such optimized codes is shown to be better than those of existing codes.
Resumo:
This paper proposes a multilevel inverter which produces hexagonal voltage space vector structure in lower modulation region and a 12-sided polygonal space vector structure in the over-modulation region. Normal conventional multilevel inverter produces 6n +/- 1 (n=odd) harmonics in the phase voltage during over-modulation and in the extreme square wave mode operation. However, this inverter produces a 12-sided polygonal space vector location leading to the elimination of 6n 1 (n=odd) harmonics in over-modulation region extending to a final 12-step mode operation. The inverter consists of three conventional cascaded two level inverters with asymmetric dc bus voltages. The switching frequency of individual inverters is kept low throughout the modulation index. In the low speed region, hexagonal space phasor based PWM scheme and in the higher modulation region, 12-sided polygonal voltage space vector structure is used. Experimental results presented in this paper shows that the proposed converter is suitable for high power applications because of low harmonic distortion and low switching losses.
Resumo:
The problem of cannibalism in communally reared crabs can be eliminated by separating the growing crabs into holding compartments. There is currently no information on optimal compartment size for growing crabs individually. 136 second instar crablets (Portunus sanguinolentus) (C2 ca. 7-10 mm carapace width (CW)) were grown for 90 days in 10 different-sized opaque and transparent walled acrylic compartments. The base area for each compartment ranged from small (32 mm × 32 mm) to large (176 mm × 176 mm). Effects of holding space and wall transparency on survival, CW, moult increment, intermoult period and average weekly gain (AWG) were examined. Most crabs reached instars C9-C10 (50-70 mm CW) by the end of experiment. The final survival rate in the smallest compartment was 25% mainly due to moult-related mortality predominantly occurring at the C9 instar. However, crabs in these smaller compartments had earlier produced significantly larger moult increments from instar to instar than those in the larger compartments (P < 0.05). Crabs in the smaller compartments (<65 mm × 65 mm) also showed significantly longer moult periods (P < 0.05). The net result was that AWG in CW was 5.22 mm week-1 for the largest compartment and 5.15 mm week-1 in smallest and did not differ significantly between compartment size groups (P = 0.916). Wall transparency had no impact on survival (P = 0.530) but a slight impact on AWG (P = 0.014). Survival rate was the best indicator of minimum acceptable compartment size (?43 mm × 43 mm) for C10 crablets because below this size death occurred before growth rate was significantly affected. For further growth, it would be necessary to transfer the crablets to larger compartments.
Resumo:
The study explores the relationship between open space design, factors impacting open space provision, and resident satisfaction with open space in multistorey apartment buildings in the context of the subtropical lifestyle and climate of Brisbane Australia. The purpose of the paper is to identify the specific physical and spatial design characteristics residents perceive to be important in open spaces associated with their private dwellings and with shared open spaces. Firsthand resident evaluations of everyday experiences of residing in inner urban high density environments are explored through a survey of 636 residents and interviews with 24 residents. Private balconies are highly valued, but residents’ satisfaction would be enhanced by spaciousness for diverse activities, privacy and climate responsive design. Communal spaces and facilities are used infrequently by many residents who prefer interactions with community outside of the building. This is related to preferences for a level of anonymity in a setting where privacy is difficult to achieve due to physical proximity of neighbours.
Resumo:
Diversification and expansion of global higher education in the 21st century, has resulted in Learning Landscapes for architectural education that can no longer be sustained by the traditional model. Changes have resulted because of surging student numbers, extensions to traditional curricula, evolving competency standards and accreditation requirements, and modified geographical and pedagogical boundaries. The influx of available new technology has helped to democratise knowledge, transforming when, where and how learning takes place. Pressures on government funded higher education budgets highlight the need for a critical review of the current approach to the design and use of learning environments. Efficient design of physical space contributes significantly to savings in provision, management and use of facilities, while also potentially improving pedagogical quality. The purpose of this research is to identify emerging trends in the design of future Learning Landscapes for architectural education in Australasia; to understand where and how students of architecture are likely to learn, in the future context. It explores the important linkages between space, place, pedagogy, technology and context, using a multi methodological qualitative research approach. An Australasian context study will explore the Learning Landscapes of 23 Schools of Architecture across Australia, New Zealand and Papua New Guinea. The focus of this paper is on the methodology which is being employed to undertake dynamic data collection for the study. The research will be determined through mapping all forms of architectural learning environments, pedagogical approaches and contextual issues, to bridge the gap between academic theory, and architectural design practice. An initial understanding that pedagogy is an intrinsic component imbedded within the design of learning environments, will play an important role. Active learning environments which are exemplified by the architectural design studio, support dynamic project based and collaborative connected learning models. These have recently become a lot more common in disciplines outside of design and the arts. It is anticipated, therefore, that the implications for this research may well have a positive impact far beyond the confines of the architectural studio learning environment.
Resumo:
Space-fractional operators have been used with success in a variety of practical applications to describe transport processes in media characterised by spatial connectivity properties and high structural heterogeneity altering the classical laws of diffusion. This study provides a systematic investigation of the spatio-temporal effects of a space-fractional model in cardiac electrophysiology. We consider a simplified model of electrical pulse propagation through cardiac tissue, namely the monodomain formulation of the Beeler-Reuter cell model on insulated tissue fibres, and obtain a space-fractional modification of the model by using the spectral definition of the one-dimensional continuous fractional Laplacian. The spectral decomposition of the fractional operator allows us to develop an efficient numerical method for the space-fractional problem. Particular attention is paid to the role played by the fractional operator in determining the solution behaviour and to the identification of crucial differences between the non-fractional and the fractional cases. We find a positive linear dependence of the depolarization peak height and a power law decay of notch and dome peak amplitudes for decreasing orders of the fractional operator. Furthermore, we establish a quadratic relationship in conduction velocity, and quantify the increasingly wider action potential foot and more pronounced dispersion of action potential duration, as the fractional order is decreased. A discussion of the physiological interpretation of the presented findings is made.