996 resultados para Sorghum bicolor (L.) Moench
Resumo:
Fruits of okra (Abelmoschus esculentus (L.) Moench.) cv. Amarelinho were harvested at three times: 35, 45 and 55 days after anthesis. Half part of the fruits of each harvest time was shelled and the seeds were dried in natural environment of laboratory or in dry chamber. The other half was dried unshelled in the same two conditions. Water contents of seeds were evaluated at harvest time and before the germination test, that was carried out when the seeds were in hygroscopic equilibrium with the two environments. The physiological quality of seeds was affected by the interaction effects of fruit age, drying method and drying condition. The highest values for percentage of germination were obtained from seeds taken from fruits 55 days old (up to 92%) and the hard seeds percentage was not affected by drying method and drying condition. The seeds from fruits of 35 and 45 days old had the germination percentage increased when dried inside the fruit in natural environment.
Resumo:
Crop rotation using cover crops with vigorous root systems may be a tool to manage soils with some degree of compaction. Root and shoot growth as well as nutrient accumulation by summer species suitable for crop rotation in tropical areas were studied at different subsoil compaction levels. Crotalaria juncea (Indian hemp), Crotalaria spectabilis (showy crotalaria), Helianthus annuus (sunflower), Pennisetum americanum (pearl millet) and Sorghum bicolor (guinea sorghum) were grown for 40 days in pots 33.5 cm high with 10 cm internal diameter. Soil in the pots had uniform bulkdensity of 1.25 Mg m-3 for the top and bottom 15 cm sections. Bulk densities of 1.31, 1.43, 1.58 and 1.70 Mg m-3 Were established in the 3.5 cm middle section. H. annuus and P. americanum had the highest early macronutrient accumulation. The grasses S. bicolor and P. americanum yielded twice as much shoot dry matter as the other species. Root growth generally decreased with increasing soil bulk density with C. spectabilis less affected than other species. Although the grasses were more sensitive to high soil penetration resistance, they showed higher root length densities at all compaction levels. P. americanum had the highest potential to be used as cover crop due to its high root density at high soil penetration resistances, vegetative vigour and ability to accumulate macronutrients. © 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Culture options for the autumn-winter season are a major problem for production systems under low rainfall. The aim of this study was to evaluate the effect of the sowing season on dry matter yield, nutrient content of the shoot and soil covering percentage of coverage plants on the soil on the intercrop: grain sorghum, rattlepods, pearl millet brachiaria grass and an area with weeds (fallow). The experiment was conducted under field conditions on an Oxisol (Haplustox), clay texture, in SelvÃria, Mato Grosso do Sul, Brazil. The experimental design was a randomized block design with eight replications, two sowing seasons and five coverage treatments. When the sorghum culture of the first sowing season reached the harvest stage, the dry matter yield on the other treatments was evaluated. Results showed that sowing in March results in higher dry mass yield and higher soil coverage percentage in the studied species. In the first sowing season, Brachiaria brizantha presents higher dry matter yield and macronutrients extraction.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Agronomia (Agricultura) - FCA
Resumo:
Pós-graduação em Agronomia (Agricultura) - FCA
Resumo:
Conselho Nacional de Desenvolvimento CientÃfico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de NÃvel Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento CientÃfico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Agronomia - FEIS
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de NÃvel Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de NÃvel Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de NÃvel Superior (CAPES)