991 resultados para Solid substrate cultivation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Different oil-containing substrates, namely, used cooking oil (UCO), fatty acids-byproduct from biodiesel production (FAB) and olive oil deodorizer distillate (OODD) were tested as inexpensive carbon sources for the production of polyhydroxyalkanoates (PHA) using twelve bacterial strains, in batch experiments. The OODD and FAB were exploited for the first time as alternative substrates for PHA production. Among the tested bacterial strains, Cupriavidus necator and Pseudomonas resinovorans exhibited the most promising results, producing poly-3-hydroxybutyrate, P(3HB), form UCO and OODD and mcl-PHA mainly composed of 3-hydroxyoctanoate (3HO) and 3-hydroxydecanoate (3HD) monomers from OODD, respectively. Afterwards, these bacterial strains were cultivated in bioreactor. C. necator were cultivated in bioreactor using UCO as carbon source. Different feeding strategies were tested for the bioreactor cultivation of C. necator, namely, batch, exponential feeding and DO-stat mode. The highest overall PHA productivity (12.6±0.78 g L-1 day-1) was obtained using DO-stat mode. Apparently, the different feeding regimes had no impact on polymer thermal properties. However, differences in polymer‟s molecular mass distribution were observed. C. necator was also tested in batch and fed-batch modes using a different type of oil-containing substrate, extracted from spent coffee grounds (SCG) by super critical carbon dioxide (sc-CO2). Under fed-batch mode (DO-stat), the overall PHA productivity were 4.7 g L-1 day-1 with a storage yield of 0.77 g g-1. Results showed that SCG can be a bioresource for production of PHA with interesting properties. Furthermore, P. resinovorans was cultivated using OODD as substrate in bioreactor under fed-batch mode (pulse feeding regime). The polymer was highly amorphous, as shown by its low crystallinity of 6±0.2%, with low melting and glass transition temperatures of 36±1.2 and -16±0.8 ºC, respectively. Due to its sticky behavior at room temperature, adhesiveness and mechanical properties were also studied. Its shear bond strength for wood (67±9.4 kPa) and glass (65±7.3 kPa) suggests it may be used for the development of biobased glues. Bioreactor operation and monitoring with oil-containing substrates is very challenging, since this substrate is water immiscible. Thus, near-infrared spectroscopy (NIR) was implemented for online monitoring of the C. necator cultivation with UCO, using a transflectance probe. Partial least squares (PLS) regression was applied to relate NIR spectra with biomass, UCO and PHA concentrations in the broth. The NIR predictions were compared with values obtained by offline reference methods. Prediction errors to these parameters were 1.18 g L-1, 2.37 g L-1 and 1.58 g L-1 for biomass, UCO and PHA, respectively, which indicates the suitability of the NIR spectroscopy method for online monitoring and as a method to assist bioreactor control. UCO and OODD are low cost substrates with potential to be used in PHA batch and fed-batch production. The use of NIR in this bioprocess also opened an opportunity for optimization and control of PHA production process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de Doutoramento em Engenharia Química e Biológica.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The behaviour of masonry elements under in-plane and out-of-plane loads can be improved through the application of strengthening systems based on reinforcing overlays. After strengthening, the transition region between the original substrate and the strengthening layer is especially stressed, and premature failure of the strengthened masonry is reached if insufficient interfacial capacity is assured. Therefore, the assessment of the mechanical behaviour of the interface is critical to the development of the masonry strengthening system based on the application of strengthening overlays. In this research a method for the characterization of the interface behaviour between two different materials, a polypropylene fibre reinforced mortar (PFRM) and a ceramic brick used for masonry construction is presented. Direct shear tests were carried out in couplet specimens. Due to the orthotropic nature of the bricks surface, the shear load was applied along three different directions in order to perform an overall estimation of the interface behaviour. The peak and residual shear stresses, as well as the failure modes, were obtained at different levels of the normal stress. Based on these experimental results constitutive laws were assessed for the simulation of the interface mechanical behaviour based on the Mohr and Mohr-Coulomb failure criteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of different anions within the ionic liquid in the characteristics of solid polymer electrolytes (SPEs) based on P(VDF-TrFE) has been investigated. 1-ethyl-3-methylimidazolium acetate, [C2mim][OAc], 1-ethyl-3-methylimidazolium triflate, [C2mim][(CF3SO3)3], 1-ethyl-3-methylimidazolium lactate, [C2mim][Lactate], 1-ethyl-3-methylimidazolium thiocyanate, [C2mim][SNC] and 1-ethyl-3-methylimidazolium hydrogen sulphate [C2mim][HSO4] have been used in SPE prepared by thermally induced phase separation (TIPS). The polymer phase, thermal and electrochemical properties of the SPE have been determined. The thermal and electrical properties of the SPEs strongly depend on the selected IL, as determined by their different interactions with the polymer matrix. The room temperature ionic conductivity increases in the following way for the different anions: [SNC] > [CF3SO3)3] > [HSO4] > [Lactate] > [OAc], which is mainly dependent on the viscosity of the ionic liquid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia de Materiais

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solid polymer electrolytes (SPEs) were obtained from chitosan plasticized with glycerol and contained europium (III) trifluoromethanesulfonate salt. The transparent samples were characterized by thermal analysis (DSC and TGA), impedance spectroscopy and electron paramagnetic resonance (EPR). The sample with 55.34 wt.% of europium triflate showed the best ionic conductivity of 1.52 × 10−6 and 7.66 × 10−5 S cm−1 at 30°C and 80°C, respectively. The thermal analysis revealed that the degradation started at around 130–145°C and the weight loss ranged from 20 to 40%. The DSC of the samples showed no Tg, but only a large endothermic peak that was centered between 160 and 200 °C. The EPR analysis showed a broadening of the EPR resonance lines with increasing europium contents in the chitosan membranes due to the magnetic dipole–dipole coupling and spin–spin exchange between the Eu2+ ions. Moreover, the electrolytes based on chitosan and europium triflate presented good flexibility, homogeneity, and transparency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work describes the influence of a high annealing temperature of about 700C on the Si(substrate)/Si3N4/TiOx/Pt/LiCoO2 multilayer system for the fabrication of all-solid-state lithium ion thin film microbatteries. Such microbatteries typically utilize lithium cobalt oxide (LiCoO2) as cathode material with a platinum (Pt) current collector. Silicon nitride (Si3N4) is used to act as a barrier against Li diffusion into the substrate. For a good adherence between Si3N4 and Pt, commonly titanium (Ti) is used as intermediate layer. However, to achieve crystalline LiCoO2 the multilayer system has to be annealed at high temperature. This post-treatment initiates Ti diffusion into the Pt-collector and an oxidation to TiOx, leading to volume expansion and adhesion failures. To solve this adhesion problem, we introduce titanium oxide (TiOx) as an adhesion layer, avoiding the diffusion during the annealing process. LiCoO2, Pt and Si3N4 layers were deposited by magnetron sputtering and the TiOx layer by thermal oxidation of Ti layers deposited by e-beam technique. Asdeposited and annealed multilayer systems using various TiOx layer thicknesses were studied by scanning electron microscopy (SEM) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) and x-ray photoelectron spectroscopy (XPS). The results revealed that an annealing process at temperature of 700C leads to different interactions of Ti atoms between the layers, for various TiOx layer thicknesses (25–45 nm).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the authors (S.M.) acknowledges Direction des Relations Extérieures of Ecole Polytechnique for financial support.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work evaluated the effect of acetylated bacterial cellulose (ABC) substrates coated with urinary bladder matrix (UBM) on the behavior of Retinal Pigment Epithelium (RPE), as assessed by cell adhesion, proliferation and development of cell polarity exhibiting transepithelial resistance and polygonal shaped-cells with microvilli. Acetylation of bacterial cellulose (BC) generated a moderate hydrophobic surface (around 65°) while the adsorption of UBM onto these acetylated substrates did not affect significantly the surface hydrophobicity. The ABS substrates coated with UBM enabled the development of a cell phenotype closer to that of native RPE cells. These cells were able to express proteins essential for their cytoskeletal organization and metabolic function (ZO-1 and RPE65), while showing a polygonal shaped morphology with microvilli and a monolayer configuration. The coated ABC substrates were also characterized, exhibiting low swelling effect (between 1.52.0 swelling/mm3), high mechanical strength (2048 MPa) and non-pyrogenicity (2.12 EU/L). Therefore, the ABC substrates coated with UBM exhibit interesting features as potential cell carriers in RPE transplantation that ought to be further explored.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de Doutoramento em Engenharia Química e Biológica.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de Doutoramento Programa Doutoral em Engenharia Electrónica e Computadores.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[Excerpt] Current agricultural and industrial practices have led to the generation of large amounts of various low-value or negative cost crude wastes, which are difficult and economically notattractive to treat and valorize. One important example of waste generation is animal fat, commonly found in tanning process and slaughterhouses. These wastes, in which the lipids are often the main and most problematic components, are not currently used effectively and there are almost no application methods to recover the respective value. (...)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The agroindustrial residues including plant tissues rich in polyphenols were explored for microbial production of potent phenolics under solid state fermentation processes. The fungal strains capable of hydrolyzing tannin-rich materials were isolated from Mexican semidesert zones. These microorganisms have been employed to release potent phenolic antioxidants during the solid state fermentation of different materials (pomegranate peels, pecan nut shells, creosote bush and tar bush). This chapter includes the critical parameters for antioxidants production from selective microbes. Technical aspects of the microbial fermentation of antioxidants have also been discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado em Bioengenharia

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerosas áreas de las sierras chicas han experimentado una gran pérdida de vegetación natural y de germoplasma nativo como consecuencia del crecimiento urbano y de la extracción de plantas sin criterios conservacionistas. El valle de Paravachasca presenta una riqueza florística con muchas especies autóctonas de un valioso potencial ornamental. Para poder proteger la vegetación nativa es necesario conocerla y evaluarla en todos los aspectos incluyendo sus posibles usos. Esta propuesta de trabajo se fundamenta en que las especies nativas constituyen un valioso recurso natural. Por lo tanto, nuestro objetivo principal es evaluar especies autóctonas herbáceas promisorias como ornamentales para establecer parámetros de reproducción y favorecer la innovación productiva, la conservación del paisaje natural y la protección del patrimonio germoplásmico. Para cumplir con dicho objetivo se realizarán viajes en distintas estaciones del año para evaluar in situ, las especies que resulten atractivas por su follaje o floración. Se recolectará material vegetal para determinarlo, caracterizarlo y formar un banco de germoplasma. Se elaborarán fichas técnicas con las cuales evaluar la viabilidad de las semillas y se realizarán pruebas de multiplicación vegetativa. Finalmente, se seleccionarán cuatro especies para su domesticación a campo o cultivo en macetas. Todos los trabajos serán documentados con ilustraciones, fotos y gráficos. Como resultado se espera generar y proveer información sobre plantas nativas, estrategias de conservación, reproducción y cultivo de especies autóctonas; además, transferir la tecnología para estimular una producción regional. Alcanzados los niveles de conocimiento necesarios se intentará establecer vínculos de intercambio de información con otros proyectos nacionales o extranjeros. Por su parte, la transferencia, validación y difusión de los resultados obtenidos se realizará mediante cursos, seminarios, talleres -en el marco educativo- de capacitación laboral, recreativo y productivo, siendo los destinatarios directos las comunas en general y los viveristas, diseñadores de parques, inversores de turismo y aficionados a las plantas, en particular. El impacto del proyecto en el ámbito científico se reflejará en publicaciones que presenten información innovadora en relación con las ciencias agropecuarias; y, en lo social, mediante la generación de posibles fuentes de trabajo.