889 resultados para Solid state synthesis
Resumo:
Three new mononuclear complexes of nitrogen-sulfur donor sets, formulated as (Fe-II(L)Cl-2] (1), [Co-II(L)Cl-2] (2) and [Ni-II(L)Cl-2] (3) where L = 1,3-bis(2-pyridylmethylthio)propane, were synthesized and isolated in their pure form. All the complexes were characterized by physicochemical and spectroscopic methods. The solid state structures of complexes I and 3 have been established by single crystal X-ray crystallography. The structural analysis evidences isomorphous crystals with the metal ion in a distorted octahedral geometry that comprises NSSN ligand donors with trans located pyridine rings and chlorides in cis positions. In dimethylformamide solution, the complexes were found to exhibit Fe-II/Fe-III, co(II)/co(III) and Ni-II/Ni-III quasi-reversible redox couples in cyclic voltammograms with E-1/2 values (versus Ag/AgCl at 298 K) of +0.295, +0.795 and +0.745 V for 1, 2 and 3, respectively. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Two mononuclear and one dinuclear copper(II) complexes, containing neutral tetradentate NSSN type ligands, of formulation [Cu-II(L-1)Cl]ClO4 (1), [Cu-II(L-2)Cl]ClO4 (2) and [Cu-2(II)(L-3)(2)Cl-2](ClO4)(2) (3) were synthesized and isolated in pure form [where L-1 = 1,2-bis(2-pyridylmethylthio)ethane, L-2 = 1,3-bis(2-pyridylmethylthio)propane and L-3 = 1,4-bis(2-pyridylmethylthio)butane]. All these green colored copper(II) complexes were characterized by physicochemical and spectroscopic methods. The dinuclear copper(II) complex 3 changed to a colorless dinuclear copper(I) species of formula [Cu-2(1)(L-3)(2)](ClO4)(2),0.5H(2)O (4) in dimethylformamide even in the presence of air at ambient temperature, while complexes I and 2 showed no change under similar conditions. The solid-state structures of complexes 1, 2 and 4 were established by X-ray crystallography. The geometry about the copper in complexes 1 and 2 is trigonal bipyramidal whereas the coordination environment about the copper(I) in dinuclear complex 4 is distorted tetrahedral. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Two new hexa-coordinated mononuclear copper(II) complexes of two ligands L-1 and L-2 containing NSSN donor sets formulated as [Cu(L)(H2O)(2)](NO3)(2) [1a, L = 1,2-bis(2-pyridylmethylthio)ethane (L-1), 1b L = 1,3-bis(2-pyridyl-methylthio)propane (L-2)] were synthesized and characterized by physico-chemical and spectroscopic methods. In 1a the single crystal X-ray crystallography analysis showed a distorted octahedral geometry about copper(II) ion. The crystal packing evidences pairs of complexes arranged about a center of symmetry and connected through a H-bond occurring between aquo ligands and nitrate anions. On reaction with chloride and pseudohalides (N-3(-) and SCN-), in acetonitrile at ambient temperature. complexes 1 changed to monocationic penta-coordinated mononuclear copper(H) species formulated as [Cu(L)(Cl)]NO3 (2), [Cu(L)(N-3)]NO3 (3). and [Cu(L)(SCN)]NO3 (4). These copper(II) complexes have been isolated in pure form from the reaction mixtures and characterized by physico-chemical and spectroscopic tools. The solid-state structure of 2a, established by X-ray crystallography, shows a trigonal bipyramidal geometry about the metal ion with a trigonality index (tau) of 0.561. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Two new silver-antimony sulfides, [C2H9N2][Ag2SbS3] (1) and [C2H9N2](2)[Ag5Sb3S8] (2), have been prepared solvothermally in the presence of ethylenediamine and characterized by single-crystal X-ray diffraction, thermogravimetry, and elemental analysis. Compound 1 crystallizes in the space group Pn (a = 6.1781(1) Angstrom, b =11.9491(3) Angstrom, c = 6.9239(2) Angstrom, =111.164(1)degrees) and 2 in the space group Pm (a = 6.2215(2) Angstrom, b = 15.7707(7) Angstrom, c = 11.6478(5) Angstrom, beta = 92.645(2)degrees). The structure of 1 consists of chains of fused five-membered Ag2SbS2 rings linked to form layers, between which the template molecules reside. Compound 2 contains honeycomb-like sheets of fused silver-antimony-sulfide six-membered rings linked to form double layers. The idealized structure can be considered to be an ordered defect derivative of that of lithium bismuthide, Li3Bi, and represents a new solid-state structure type.
Resumo:
Two new antimony sulphides have been prepared solvothermally and characterised by single-crystal X-ray diffraction. [Co(en)(3)][Sb4S7] (1) was prepared at 140 degreesC from COS, Sb2S3 and S in the presence of ethylenediamine, whilst heating a mixture of Sb2S3, Co and S in tris(2aminoethyl)amine, N(CH2CH2NH2)(3), at 180 degreesC fegults in the formation of [C6H20N4][Sb4S7] (2). Both materials contain [Sb4S7](2-) chains formed from linkage of cyclic Sb3S63- units by SbS33- pyramids. In (1), the [Sb4S7] chains are linked by secondary Sb-S interactions to form sheets, between which the. charge balancing [Co(en)(3)](2+) cations reside. The structure of (2) involves interconnection of pairs of [Sb4S7](2-) chains through Sb2S2 rings to form isolated [Sb4S7](2-) double chains which are interleaved by protonated template molecules. (C) 2004 Elsevier B.V. All rights resereved.
Resumo:
The novel cryptand in/out-3, containing two tripyrrolemethane units briged by three 1,3- diisopropylidenbenzene arms was readily synthesized by a convergent three-step synthesis. It binds fluoride by inclusion with excellent selectivity with respect to a number of other tested anions. The structure of the free receptor and that of its fluoride complex were investigated in solution by NMR spectroscopy. The solid state X-ray structure of the free cryptand 3 was also determined.
Resumo:
The heterogeneous solid catalyst, mercaptopropylsilica (MPS), has been prepared by a modified procedure in water and its structure confirmed by solid state carbon-13 CP-MAS NMR spectrum. This catalyst has been efficiently utilized for the synthesis of a wide variety of tri-, tetrasubstituted imidazoles and their bis-analogues at room temperature. The protocol was further explored for the synthesis of the drug trifenagrel.
Resumo:
We report the synthesis and characterisation of tetrakis(2,4,6-triisopropylphenyl)diphosphine. Synthesis is effected by the treatment of PCl3 with an excess of 2,4,6-triisopropylphenyllithium (or the equivalent Grignard reagent) in 70% yield. While under normal circumstances the triarylphosphine would be expected, excessive bulk prevents this, and the resulting diphosphine is, unusually, stable to PP cleavage by further organolithium moieties. The compound is stable, both thermally (m.p. 185°C) and to air and water in the solid state, although conversion to the equivalent diorganophosphinate ester is effected by boiling ethanolic solutions in air. Crystallisation from hexane/ethanol afforded pale yellow crystals of X-ray quality. The molecule is characterised by m.p., IR, NMR, elemental analysis (C, H, P) and MS. The X-ray structure shows an antiperiplanar conformation with a PP separation of 2.2461(16) Å. Comparisons are made with other diphosphines, the title compound being only the fourth simple diphosphine to be structurally characterised.
Resumo:
2-[Methyl(2-methylphenyl)amino]ethanol undergoes an ortho-alkyllithiation reaction with n-butyllithium to lead to a new mixed benzyllithium−lithium alkoxide. This organolithium species reacts with PPh2Cl, with selective P−C bond formation, to afford the ligand 2-[methyl(2-((diphenylphosphino)methyl)phenyl)amino]ethanol L1. The coordination of the ligand L1 to copper(I) leads to the complex [Cu(L1)2](BF4), whose structure has been determined by an X-ray diffraction study. In the solid state, one of the ligands acts as a monodentate phosphine while the other adopts a tridentate P,N,O coordination mode. A variable-temperature 31P NMR study demonstrated the existence of an equilibrium between the two modes in solution, with a coalescence temperature of ca. 0 °C, indicating a double-hemilabile behavior for the nitrogen and the oxygen functions. L1 reacts with [Pd(Me)(Cl)(COD)] to give a dinuclear complex in which the ligand appears to behave as a bridging anionic P,O ligand. Such a complex could serve as a model for a key intermediate in the proposed mechanism for the homogeneous catalysis of the methoxycarbonylation of propyne by certain palladium(II) complexes containing P,N ligands. L1 can undergo a second ortho-alkylmetalation reaction with n-butyllithium which, after addition of PPh2Cl, provides the new ligand 2-{methyl[2-(bis(diphenylphosphino)methyl)phenyl]amino}ethanol (L2) in high yield.
Resumo:
New monometallic complex salts of the form X-2[M(L)(2)] [M = Ni2+, X = (CH3)(2)NH2+(1); M = Ni2+, X = (CH3)(4)N+ (2); M = Ni2+, X = (C2H5)(4)N+(3); M = Ni2+, X = (C3H7)(4)N+(4); M = Ni2+; X = (C6H13)(4)N+) (5); M = Pd2+,X = (CH3)(2)NH2+(6); M = Pd2+, X= (C2H5)(4)N+(7); M = Pd2+, X= (C3H7)(4)N+(8); M = Pd2+, X = (C6H13)(4)N+ (9); M = Pt2+, X = (CH3)(2)NH2+(10); L = p-tolylsulfonyldithiocarbimate (CH3C6H4SO2N=CS22 )] have been prepared and characterized by elemental analysis, IR, H-1 and C-13 NMR and UV-Vis spectroscopy; 1, 3, 4 and 5 by X-ray crystallography. In 1, 3, 4 and 5, the Ni atom is four coordinate with a square planar environment being bonded to four sulfur atoms from two bidentate ligands. All the salts are weakly conducting (sigma(rt) = 10 (7) to 10 (14) Scm (1)) because of the lack of significant S center dot center dot center dot S intermolecular interactions between complex anions [M(L)(2)](2) in the solid state however, they show behavior of semiconductors in the temperature range 353-453 K. All the Pd(II) and Pt(II) salts exhibited phtotolumeniscent emissions near visible region in solution at room temperature.
Resumo:
This work reports the ligational behavior of the neutral bidentate chelating molecule 2-(3,5-dimethyl pyrazol-1-yl) benzothiazole towards the oxomolybdenum(V) center. Both mononuclear complexes of the type (MoOX3L)-O-V and binuclear complexes of the formula (Mo2O4X2L2)-O-V (where X = Cl, Br) are isolated in the solid state. The complexes are characterized by elemental analyses, various spectroscopic techniques (UV-Vis IR), magnetic susceptibility measurement at room temperature, and cyclic voltammetry for their redox behavior at a platinum electrode in CH3CN. The mononuclear complexes (MoOX3L)-O-V are found to be paramagnetic while the binuclear complexes Mo2O4X2L2 are diamagnetic. Crystal and molecular structure of the ligand and the dioxomolybdenum complex (MoO2Br2L)-O-VI (obtained from the complex MoOBr3L during crystallization) have been solved by single crystal X-ray diffraction technique. Relevant DFT calculations of the ligand and the complex (MoO2Br2L)-O-VI are also carried out.
Synthesis, structure and electrochemical properties of some thiosemicarbazone complexes of ruthenium
Resumo:
Reaction of salicylaldehyde thiosemicarbazone (L-1), 2-hydroxyacetophenone thiosemicarbazone (L-2) and 2-hydroxynapthaldehyde thiosemicarbazone (L-3) with [Ru(dmso)(4)Cl-2] affords a family of three dimeric complexes (1), (2) and (3) respectively. Crystal structure of the complex (3) has been determined. In these complexes, each monomeric unit consists of one ruthenium center and two thiosemicarbazone ligands, one of which is coordinated to ruthenium as O,N,S-donor and the other as N,S-donor forming a five-membered chelate ring. Two such monomeric units remain bridged by the sulfur atoms of the O,N,S-coordinated thiosemicarbazones. Due to this sulfur bridging, the two ruthenium centers become so close to each other, that a ruthenium-ruthenium single bond is also formed. All the complexes are diamagnetic in the solid state and in dimethylsulfoxide solution show intense absorptions in the visible and ultraviolet region. Origin of these spectral transitions has been established from DFT calculations. Cyclic voltammetry on the complexes shows two irreversible ligand oxidations on the positive side of SCE and two irreversible ligand reductions on the negative side.
Resumo:
The synthesis and crystal structures of three nonheme di-iron(III) complexes with a tridentate N,N,O Schiff-base ligand, 2-({[2-(dimethylamino) ethyl] imino} methyl) phenol (HL), are reported. Complexes [Fe2OL2(NCO)(2)] (1a) and [Fe2OL2(SAL)(2)]center dot H2O [SAL = o-(CHO)C6H4O-] (1b) are unsupported mu-oxido-bridged dimers, and [Fe-2(OH)L-2(HCOO)(2)-(Cl)] (2) is a mu-hydroxido-bridged dimer supported by a formato bridging ligand. All complexes have been characterized by X-ray crystallography and spectroscopic analysis. Complex 1b has been reported previously; however, it has been reinvestigated to confirm the presence of a crucial water molecule in the solid state. Structural analyses show that in 1a the iron atoms are pentacoordinate with a bent Fe-O-Fe angle [142.7(2)degrees], whereas in 2 the metal centers are hexacoordinate with a normal Fe-OH-Fe bridging angle [137.9(2)degrees]. The Fe-O-Fe angles in complexes 1a and 1b differ significantly to those usually shown by (mu-oxido) Fe-III complexes. A theoretical study has been performed in order to rationalize this deviation. Moreover, the influence of the water molecule observed in the solid-state structure of 1b on the Fe-O-Fe angle is also analyzed theoretically.
Resumo:
Cobalt(III) complexes of diacetyl monooxime benzoyl hydrazone (dmoBH(2)) and diacetyl monooxime isonicotinoyl hydrazone (dmoInH(2)) have been synthesized and characterized by elemental analyses and spectroscopic methods. The X-ray crystal structures of the two hydrazone ligands, as well as that of the cobalt(III) complex [Co(III)(dmoInH)(2)]Cl center dot 2H(2)O, are also reported. It is found that in the cobalt(III) complexes the Co(III) ion is hexa-coordinated, the hydrazone ligands behaving as mono-anionic tridentate O,N,N donors. In the [Co(III)(dmoInH) (2)]Cl center dot 2H(2)O complex, the amide and the oxime hydrogens are deprotonated for both the ligands, while the isonicotine nitrogens are protonated. In the [Co(III)(d-moBH)(2)] Cl complex, only the amide nitrogens are deprotonated. It is shown that the additional hydrogen bonding capability of the isonicotine nitrogen results in different conformation and supramolecular structure for dmoInH(2), compared to dmoBH(2), in the solid state. Comparing the structure of the [CoIII(dmoInH)(2)]Cl center dot 2H(2)O with that of the Zn(II) complex of the same ligand, reported earlier, it is seen that the metal ion has a profound influence on the supramolecular structure, due to change in geometrical dispositions of the chelate rings.
Resumo:
Bi2O2Te was synthesised from a stoichiometric mixture of Bi, Bi2O3 and Te by a solid state reaction. Analysis of powder X-ray diffraction data indicates that this material crystallises in the anti-ThCr2Si2 structure type (space group I4/mmm), with lattice parameters a = 3.98025(4) and c = 12.70391(16) Å. The electrical and thermal transport properties of Bi2O2Te were investigated as a function of temperature over the temperature range 300 ≤ T/K ≤ 665. These measurements indicate that Bi2O2Te is an n-type semiconductor, with a band gap of 0.23 eV. The thermal conductivity of Bi2O2Te is remarkably low for a crystalline material, with a value of only 0.91 W m-1 K-1 at room temperature.