990 resultados para Solar oven
Resumo:
Studies on the quality assessments of three traditional, rotary and solar tunnel dried SIS products were conducted. Organoleptic quality of traditional dried SIS products available in the markets was poor compared to those produced in rotary and solar tunnel dryer. Reconstitution of samples were in the range of 54.26% to 75.24%, 69.37% to 83.73% and 55.08% to 80.24% when soaked at 80°C for traditional, rotary and solar tunnel dried products, respectively. The percentage of reconstitution increased with the increase of soaking time and the uptake of water was maximum after 60 min of soaking. The moisture contents of traditional, rotary and solar tunnel dried products were in the range of 26.02% to 27.33%, 16.23% to 22.84% and 13.71% to 19.30%, respectively. The protein contents were in the range of 60.78% to 72.59%, 62.17% to 76.27% and 61.11% to 76.00%, respectively; lipid contents were in the range of 12.26% to 22.60%, 14.00% to 24.71% and 13.92% to 22.39%, respectively and ash contents in the range of 15.11% to 16.59%, 8.32% to 13.51% and 8.71% to 16.45%, respectively on dry matter basis. The TVB-N content of rotary and solar tunnel dried products was low compared to traditional one ranging from 10.64 to 17.52 mg/100g and 14.34 to 15.68 mg/100g, respectively whereas the TVB-N content of traditional samples was in the range of 15.46 to 20.36 mg/100g. The bacterial load of traditional, rotary and solar tunnel dried products were in the range of 1.43x10 super(8) CFU/g to 2.89 x10 super(80 CFU/g, 1.91x10 super(8) CFU/g to 2.84x10 super(8) CFU/g and 1.95x10 super(8) CFU/g to 2.59x10 super(8) CFU/g, respectively. The results of the study indicated that dried fish products from rotary dryer and solar tunnel dryer were found to be of better quality in nutritional and food quality aspects than those of traditional dried products.
Resumo:
A study was conducted on the shelf-life of rotary and solar tunnel dried SIS products under different packaging and storage conditions. Organoleptically dried products were found in good condition after a storage period of 60 days in ambient and chilled conditions. The moisture content, TVB-N value and bacterial load slightly increased during 60 days of storage in ambient and chilled conditions. The changes in moisture content and bacterial load were faster in ambient temperature than in chilled storage condition whereas changes in TVB-N value was higher in chilled condition than in ambient temperature. The initial moisture content was in the range of 13.71% to 22.84%. After 60 days of storage in ambient and chilled condition the moisture content of dried products was in the range of 15.09% to 25.11% and 14.49% to 25.01%, respectively. The initial TVB-N value was in the range of 10.64 to 17.52 mg/100g and after 60 days of storage in ambient and chilled condition, TVB-N value was in the range of 29.00 to 34.82 mg/100g and 31.41 to 39.11 mg/100g, respectively. The initial bacterial load was in the range of 1.91x10 super(8) to 2.84x10 super(8) and after 60 days of storage in ambient and chilled condition, the bacterial load was in the range of 6.2x10 super(8) to 1.8x10 super(9) and 5.75x10 super(7) to 5.05x10 super(8) CFU/g, respectively. The results of the present study indicated that it is necessary to store high quality dried products in sealed packed in chilled condition to ensure good quality up to a certain period of time.
Production of quality dried small indigenous fish species products using low cost solar tunnel drier
Resumo:
A low cost solar drier was constructed using locally available materials. The size of the drier was 20x3.6x3 having drying capacity of 80 kg of SIS (w/w). Optimization of moisture content was observed for mola, dhela, chapila, chanda and puti at temperature ranges between 40-45°C and 50-55°C in solar tunnel drier. There was little or no change in moisture content at temperature below 40°C during the first 3 hours. Then the moisture content declined gradually with the increase of drying period. On the other hand, at temperature between 50-55°C, moisture content started to decline after 2 hours of drying. The moisture content of the sample reached at about 16% after 26 hours of sun drying at 40-45°C and 20 hours at 50-55°C. The optimum temperature for producing high quality dried products was 45-50°C in solar tunnel drier. The temperature and relative humidity outside and inside the dryers (with fish) at various locations were recorded from 8.00am to 4.00pm. The normal atmospheric ambient temperature was recorded in the range of 25-37°C from at 8:00am to 4:00pm. During the same period the atmospheric relative humidity recorded was in the range of 30-58%. On the other hand, the maximum temperature inside the dryers was recorded in the range of 28-65°C. The lowest temperature recorded was 28°C in the morning and at 13.00pm the highest temperature 65°C was recorded. The maximum relative humidity 58% found in the afternoon and minimum of 28% at noon. There was inverse relationship between temperature intensity of sunshine and humidity which decreased as sunshine increased. In total, it took around 26 hours of drying to reduce the moisture level to about 16%.
Resumo:
The basic types of hybrid PV/thermal solar system and their performance were analyzed comparatively. The research method and recent developments of PV/T system were described. This paper gave some examples of PV/T products and demonstration project. Finally, some main problems, which should be solved in R&D of PV/T system, were presented and the outlook of PV/T technology was briefly discussed.
Resumo:
This paper describes a new strategy to make a full solid-state, flexible, dye-sensitized solar cell (DSSC) based on novel ionic liquid gel, organic dye, ZnO nanoparticles and carbon nanotube (CNT) thin film stamped onto a polyethylene terephthalate (PET) substrate. The CNTs serve both as the charge collector and as scaffolds for the growth of ZnO nanoparticles, where the black dye molecules are anchored. It opens up the possibility of developing a continuous roll to roll processing for THE mass production of DSSCs.
Resumo:
A voltage sensing buck converter-based technique for maximum solar power delivery to a load is presented. While retaining the features and advantages of the incremental conductance algorithm, this technique is more desirable because of single sensor use. The technique operates by maximising power at the buck converter output instead of the input.
Resumo:
A new strategy for enhancing the efficiency and reducing the production cost of TiO 2 solar cells by design of a new formulated TiO 2 paste with tailored crystal structure and morphology is reported. The conventional three- or four-fold layer deposition process was eliminated and replaced by a single layer deposition of TiO 2 compound. Different TiO 2 pastes with various crystal structures, morphologies and crystallite sizes were prepared by an aqueous particulate sol-gel process. Based on simultaneous differential thermal (SDT) analysis the minimum annealing temperature to obtain organic-free TiO 2 paste was determined at 400°C, being one of the lowest crystallization temperatures of TiO 2 photoanode electrodes for solar cell application. Photovoltaic measurements showed that TiO 2 solar cell with pure anatase crystal structure had higher power conversion efficiency (PCE) than that made of pure rutile-TiO 2. However, the PCE of solar cells depends on the anatase to rutile weight ratio, reaching a maximum at a specific value due to the synergic effect between anatase and rutile TiO 2 nanoparticles. Moreover, it was found that the PCE of solar cells made of crystalline TiO 2 powders was much higher, increasing in the range 32-84% depending on anatase to rutile weight ratio, than that of prepared by amorphous powders. TiO 2 solar cell with the morphology of mixtures of nanoparticles and microparticles had higher PCE than the solar cell with the same phase composition containing TiO 2 nanoparticles due to the role of TiO 2 microparticles as light scattering particles. The presented strategy would open up new insight into fabrication and structural design of low-cost TiO 2 solar cells with high power conversion efficiency. © 2012 Elsevier Ltd.
Resumo:
In this letter we report a facile one-pot synthesis of intercalated ZnO particles for inexpensive, low-temperature solution processed dye-sensitised solar cells. High interconnectivity facilitates enhanced charge transfer between the ZnO nanoparticles and a consequent enhancement in cell efficiency. ZnO thin films were formed from a wide range of nanoparticle diameters which simultaneously increased optical scattering whilst enhancing dye loading. A possible growth mechanism was proposed for the synthesis of ZnO nanoparticles. The intercalated ZnO nanoparticle thin films were integrated into the photoanodes of dye-sensitised solar cells which showed an increase in performance of 37% compared to structurally equivalent cells employing ZnO nanowires. © 2012 Elsevier B.V.
Resumo:
Heterojunction is an important structure for the development of photovoltaic solar cells. In contrast to homojunction structures, heterojunction solar cells have internal crystalline interfaces, which will reflect part of the incident light, and this has not been considered carefully before though many heterostructure solar cells have been commercialized. This paper discusses the internal reflection for various material systems used for the development of heterostructure-based solar cells. It has been found that the most common heterostructure solar cells have internal reflection less than 2%, while some potential heterojunction solar cells such as ITO/GaAs, ITO/InP, Si/Ge, polymer/semiconductors and oxide semiconductors may have internal reflection as high as 20%. Also it is worse to have a window layer with a lower refractive index than the absorption layer for solar cells. Ignoring this strong internal reflection will lead to severe deterioration and reduction of conversion efficiency; therefore measures have to be taken to minimize or prevent this internal reflection. © 2013 Elsevier B.V.