978 resultados para Slot antenna arrays
Resumo:
Recent theoretical and experimental results suggested that the silver superlens could be constructed through controlling silver thin film thickness and preparation conditions, and applied in subdiffraction-limited optical imaging and optical lithography. In this work, we report another significant application of silver superlens-ultrahigh density optical data storage. With the silver superlens the subdiffraction-limited pit arrays on an optical disk are dynamically read out and the carrier-to-noise ratio can reach 25 dB for the thin film thickness of 46 nm. The readout laser power and readout velocity have little effect on the carrier-to-noise ratio. Additionally, in our experiment the silver thin film thickness needs to be controlled in the range from 20 to 80 nm.
Resumo:
Fast moving arrays of periodic sub-diffraction-limit pits were dynamically read out via a silver thin film. The mechanism of the dynamic readout is analysed and discussed in detail, both experimentally and theoretically. The analysis and experiment show that, in the course of readout, surface plasmons can be excited at the silver/air interface by the focused laser beam and amplified by the silver thin film. The surface plasmons are transmitted into the substrate/silver interface with a large enhancement. The surface waves at the substrate/silver interface are scattered by the sinusoidal pits of sub-diffraction-limit size. The scattered waves are collected by a converging lens and guided into the detector for the readout.
Resumo:
A novel method for preparing nano-supercapacitor arrays, in which each nano-supercapacitor consisted of electropolymerized Polypyrrole (PPy) electrode / porous TiO2 separator / chemical polymerized PPy electrode, was developed in this paper. The nano-supercapacitors were fabricated in the nano array pores of anodic aluminum oxide template using the bottom-up, layer-by-layer synthetic method. The nano-supercapacitor diameter was 80 nm, and length 500 nm. Based on the charge/discharge behavior of nano-supercapacitor arrays, it was found that the PPy/TiO2/PPy array supercapacitor devices performed typical electrochemical supercapacitor behavior. The method introduced here may find application in manufacturing nano-sized electrochemical power storage devices in the future for their use in the area of microelectronic devices and microelectromechanical systems.
Dielectrophoretic assembly of high-density arrays of individual graphene devices for rapid screening
Resumo:
Ternary CoNiP nanowire (NW) arrays have been synthesized by electrochemical deposition inside the nanochannels of anodic aluminum oxide (AAO) template. The CoNiP NWs deposited at room temperature present soft magnetic properties, with both parallel and perpendicular coercivities less than 500 Oe. In contrast, as the electrolyte temperature (T-elc) increases from 323 to 343 K, the NWs exhibit hard magnetic properties with coercivities in the range of 1000-2500 Oe. This dramatic increase in coercivities can be attributed to the domain wall pinning that is related to the formation of Ni and Co nanocrystallites and the increase of P content. The parallel coercivity (i.e. the applied field perpendicular to the membrane surface) maximum as high as 2500 Oe with squareness ratio up to 0.8 is achieved at the electrolyte temperature of 328 K. It has been demonstrated that the parallel coercivity of CoNiP NWs can be tuned in a wide range of 200-2500 Oe by controlling the electrolyte temperature, providing an easy way to control magnetic properties and thereby for their integration with magnetic-micro-electromechanical systems (MEMS). (C) 2008 Elsevier B.V. All rights reserved.