962 resultados para Sex determination, Genetic.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article presents a feasibility study with the objective of investigating the potential of multi-detector computed tomography (MDCT) to estimate the bone age and sex of deceased persons. To obtain virtual skeletons, the bodies of 22 deceased persons with known age at death were scanned by MDCT using a special protocol that consisted of high-resolution imaging of the skull, shoulder girdle (including the upper half of the humeri), the symphysis pubis and the upper halves of the femora. Bone and soft-tissue reconstructions were performed in two and three dimensions. The resulting data were investigated by three anthropologists with different professional experience. Sex was determined by investigating three-dimensional models of the skull and pelvis. As a basic orientation for the age estimation, the complex method according to Nemeskéri and co-workers was applied. The final estimation was effected using additional parameters like the state of dentition, degeneration of the spine, etc., which where chosen individually by the three observers according to their experience. The results of the study show that the estimation of sex and age is possible by the use of MDCT. Virtual skeletons present an ideal collection for anthropological studies, because they are obtained in a non-invasive way and can be investigated ad infinitum.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: The role of estrogen and progesterone in the development of endometrial cancer is well documented. Few studies have examined the association of genetic variants in sex hormone-related genes with endometrial cancer risk. METHODS: We conducted a case-control study nested within three cohorts to examine the association of endometrial cancer risk with polymorphisms in hormone-related genes among 391 cases (92% postmenopausal at diagnosis) and 712 individually-matched controls. We also examined the association of these polymorphisms with circulating levels of sex hormones and SHBG in a cross-sectional analysis including 596 healthy postmenopausal women at blood donation (controls from this nested case-control study and from a nested case-control study of breast cancer in one of the three cohorts). RESULTS: Adjusting for endometrial cancer risk factors, the A allele of rs4775936 in CYP19 was significantly associated (OR(per allele)=1.22, 95% CI=1.01-1.47, p(trend)=0.04), while the T allele of rs10046 was marginally associated with increased risk of endometrial cancer (OR(per allele)=1.20, 95% CI=0.99-1.45, p(trend)=0.06). PGR rs1042838 was also marginally associated with risk (OR(per allele)=1.25, 95% CI=0.96-1.61, p(trend)=0.09). No significant association was found for the other polymorphisms, i.e. CYP1B1 rs1800440 and rs1056836, UGT1A1 rs8175347, SHBG rs6259 and ESR1 rs2234693. Rs8175347 was significantly associated with postmenopausal levels of estradiol, free estradiol and estrone and rs6259 with SHBG and estradiol. CONCLUSION: Our findings support an association between genetic variants in CYP19, and possibly PGR, and risk of endometrial cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACT : Gene duplication is a fundamental source of raw material for the origin of genetic novelty. It has been assumed for a long time that DNA-based gene duplication was the only source of new genes. Recently however, RNA-based gene duplication (retroposition) was shown in multiple organisms to contribute significantly to their genetic diversity. This mechanism produces intronless gene copies (retrocopies) that are inserted in random genomic position, independent of the position of the parental source genes. In human, mouse and fruit fly, it was demonstrated that the X-linked genes spawned an excess of functional retroposed gene copies (retrogenes). In human and mouse, the X chromosome also recruited an excess of retrogenes. Here we further characterized these interesting biases related to the X chromosome in mammals. Firstly, we have confirmed presence of the aforementioned biases in dog and opossum genome. Then based on the expression profile of retrogenes during various spermatogenetic stages, we have provided solid evidence that meiotic sex chromosome inactivation (MSCI) is responsible for an excess of retrogenes stemming from the X chromosome. Moreover, we showed that the X-linked genes started to export an excess of retrogenes just after the split of eutherian and marsupial mammalian lineages. This suggests that MSCI has originated around this time as well. More fundamentally, as MSCI reflects the spread of recombination barrier between the X and Y chromosomes during their evolution, our observation allowed us to re-estimate the age of mammalian sex chromosomes. Previous estimates suggested that they emerged in the common ancestor of all mammals (before the split of monotreme lineage); whereas, here we showed that they originated around the split of marsupial and eutherian lineages, after the divergence of monotremes. Thus, the therian (marsupial and eutherian) sex chromosomes are younger than previously thought. Thereafter, we have characterized the bias related to the recruitment of genes to the X chromosome. Sexually antagonistic forces are most likely driving this pattern. Using our limited retrogenes expression data, it is difficult to determine the exact nature of these forces but some conclusions have been made. Lastly, we looked at the history of this biased recruitment: it commenced around the split of marsupial and eutherian lineages (akin to the biased export of genes out of the X). In fact, the sexually antagonistic forces are predicted to appear just around that time as well. Thereby, the history of the recruitment of genes to the X, provides an indirect evidence that these forces are responsible for this bias.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plants are notoriously variable in gender, ranging in sex allocation from purely male through hermaphrodite to purely female. This variation can have both a genetic and an adaptive plastic component. In gynodioecious species, where females co-occur with hermaphrodites, hermaphrodites tend to shift their allocation towards greater maleness when growing under low-resource conditions, either as a result of hermaphrodites shifting away from an expensive female function, or because of enhanced siring advantages in the presence of females. Similarly, in the androdioecious plant Mercurialis annua, where hermaphrodites co-exist with males, hermaphrodites also tend to enhance their relative male allocation under low-resource conditions. Here, we ask whether this response differs between hermaphrodites that have been evolving in the presence of males, in a situation analogous to that supposed for gynodioecious populations, vs. those that have been evolving in their absence. We grew hermaphrodites of M. annua from populations in which males were either present or absent under different levels of nutrient availability and compared their reaction norms. We found that, overall, hermaphrodites from populations with males tended to be more female than those from populations lacking males. Importantly, hermaphrodites' investment in pollen and seed production was more plastic when they came from populations with males than without them, reducing their pollen production at low resource availability and increasing their seed production at high resource availability. These results are consistent with the hypothesis that plasticity in sex allocation is enhanced in hermaphrodites that have likely been exposed to variation in mating opportunities due to fluctuations in the frequency of co-occurring males.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polyacrylamide gel electrophoresis was used to elucidate genetic variation at 13 isozyme loci among forest populations of Lutzomyia shannoni from three widely separated locations in Colombia: Palambí (Nariño Department), Cimitarra (Santander Department) and Chinácota (Norte de Santander Department). These samples were compared with a laboratory colony originating from the Magdalena Valley in Central Colombia. The mean heterozygosity ranged from 16 to 22%, with 2.1 to 2.6 alleles detected per locus. Nei's genetic distances among populations were low, ranging from 0.011 to 0.049. The estimated number of migrants (Nm=3.8) based on Wright's F-Statistic, F ST, indicated low levels of gene flow among Lu. shannoni forest populations. This low level of migration indicates that the spread of stomatitis virus occurs via infected host, not by infected insect. In the colony sample of 79 individuals, the Gpi locus was homozygotic (0.62/0.62) in all females and heterozygotic (0.62/0.72) in all males. Although this phenomenon is probably a consequence of colonization, it indicates that Gpi is linked to a sex determining locus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mammalian sex chromosomes stem from ancestral autosomes and have substantially differentiated. It was shown that X-linked genes have generated duplicate intronless gene copies (retrogenes) on autosomes due to this differentiation. However, the precise driving forces for this out-of-X gene "movement" and its evolutionary onset are not known. Based on expression analyses of male germ-cell populations, we here substantiate and extend the hypothesis that autosomal retrogenes functionally compensate for the silencing of their X-linked housekeeping parental genes during, but also after, male meiotic sex chromosome inactivation (MSCI). Thus, sexually antagonistic forces have not played a major role for the selective fixation of X-derived gene copies in mammals. Our dating analyses reveal that although retrogenes were produced ever since the common mammalian ancestor, selectively driven retrogene export from the X only started later, on the placental mammal (eutherian) and marsupial (metatherian) lineages, respectively. Together, these observations suggest that chromosome-wide MSCI emerged close to the eutherian-marsupial split approximately 180 million years ago. Given that MSCI probably reflects the spread of the recombination barrier between the X and Y, crucial for their differentiation, our data imply that these chromosomes became more widely differentiated only late in the therian ancestor, well after the divergence of the monotreme lineage. Thus, our study also provides strong independent support for the recent notion that our sex chromosomes emerged, not in the common ancestor of all mammals, but rather in the therian ancestor, and therefore are much younger than previously thought

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The direction, intensity and shape of viability-, sexual- and fecundity selection on body mass were investigated in a natural population of the greater white-toothed shrew (Crocidura russula), combining parentage assignment through molecular techniques and mark-recapture data over several generations. A highly significant stabilizing viability selection was found in both sexes, presumably stemming from the constraints imposed by their insectivorous habits and high metabolic costs. Sexual selection, directional in both sexes, was twice as large in males than in females. Our results suggest that body mass matters in this context by facilitating the acquisition and defense of a breeding territory. No fecundity selection could be detected. The direction of sexual size dimorphism (SSD) was in agreement with the observed pattern of selective pressures: males were heavier than females, because of stronger sexual selection. SSD intensity, however, was low compared with other mammals, because of the low level of polygyny, the active role of females in territory defense and the intensity of stabilizing viability selection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Natural selection is typically exerted at some specific life stages. If natural selection takes place before a trait can be measured, using conventional models can cause wrong inference about population parameters. When the missing data process relates to the trait of interest, a valid inference requires explicit modeling of the missing process. We propose a joint modeling approach, a shared parameter model, to account for nonrandom missing data. It consists of an animal model for the phenotypic data and a logistic model for the missing process, linked by the additive genetic effects. A Bayesian approach is taken and inference is made using integrated nested Laplace approximations. From a simulation study we find that wrongly assuming that missing data are missing at random can result in severely biased estimates of additive genetic variance. Using real data from a wild population of Swiss barn owls Tyto alba, our model indicates that the missing individuals would display large black spots; and we conclude that genes affecting this trait are already under selection before it is expressed. Our model is a tool to correctly estimate the magnitude of both natural selection and additive genetic variance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Androgens are key regulators of prostate gland maintenance and prostate cancer growth, and androgen deprivation therapy has been the mainstay of treatment for advanced prostate cancer for many years. A long-standing hypothesis has been that inherited variation in the androgen receptor (AR) gene plays a role in prostate cancer initiation. However, studies to date have been inconclusive and often suffered from small sample sizes. Objective and Methods: We investigated the association of AR sequence variants with circulating sex hormone levels and prostate cancer risk in 6058 prostate cancer cases and 6725 controls of Caucasian origin within the Breast and Prostate Cancer Cohort Consortium. We genotyped a highly polymorphic CAG microsatellite in exon 1 and six haplotype tagging single nucleotide polymorphisms and tested each genetic variant for association with prostate cancer risk and with sex steroid levels. Results: We observed no association between AR genetic variants and prostate cancer risk. However, there was a strong association between longer CAG repeats and higher levels of testosterone (P = 4.73 × 10−5) and estradiol (P = 0.0002), although the amount of variance explained was small (0.4 and 0.7%, respectively). Conclusions: This study is the largest to date investigating AR sequence variants, sex steroid levels, and prostate cancer risk. Although we observed no association between AR sequence variants and prostate cancer risk, our results support earlier findings of a relation between the number of CAG repeats and circulating levels of testosterone and estradiol.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Temporomandibular disorder (TMD) is a multifactorial syndrome related to a critical period of human life. TMD has been associated with psychological dysfunctions, oxidative state and sexual dimorphism with coincidental occurrence along the pubertal development. In this work we study the association between TMD and genetic polymorphisms of folate metabolism, neurotransmission, oxidative and hormonal metabolism. Folate metabolism, which depends on genes variations and diet, is directly involved in genetic and epigenetic variations that can influence the changes of last growing period of development in human and the appearance of the TMD. METHODS A case-control study was designed to evaluate the impact of genetic polymorphisms above described on TMD. A total of 229 individuals (69% women) were included at the study; 86 were patients with TMD and 143 were healthy control subjects. Subjects underwent to a clinical examination following the guidelines by the Research Diagnostic Criteria for Temporomandibular Disorders (RDC/TMD). Genotyping of 20 Single Nucleotide Polymorphisms (SNPs), divided in two groups, was performed by multiplex minisequencing preceded by multiplex PCR. Other seven genetic polymorphisms different from SNPs (deletions, insertions, tandem repeat, null genotype) were achieved by a multiplex-PCR. A chi-square test was performed to determine the differences in genotype and allelic frequencies between TMD patients and healthy subjects. To estimate TMD risk, in those polymorphisms that shown significant differences, odds ratio (OR) with a 95% of confidence interval were calculated. RESULTS Six of the polymorphisms showed statistical associations with TMD. Four of them are related to enzymes of folates metabolism: Allele G of Serine Hydoxymethyltransferase 1 (SHMT1) rs1979277 (OR = 3.99; 95%CI 1.72, 9.25; p = 0.002), allele G of SHMT1 rs638416 (OR = 2.80; 95%CI 1.51, 5.21; p = 0.013), allele T of Methylentetrahydrofolate Dehydrogenase (MTHFD) rs2236225 (OR = 3.09; 95%CI 1.27, 7.50; p = 0.016) and allele A of Methionine Synthase Reductase (MTRR) rs1801394 (OR = 2.35; 95CI 1.10, 5.00; p = 0.037). An inflammatory oxidative stress enzyme, Gluthatione S-Tranferase Mu-1(GSTM1), null allele (OR = 2.21; 95%CI 1.24, 4.36; p = 0.030) and a neurotransmission receptor, Dopamine Receptor D4 (DRD4), long allele of 48 bp-repeat (OR = 3.62; 95%CI 0.76, 17.26; p = 0.161). CONCLUSIONS Some genetic polymorphisms related to folates metabolism, inflammatory oxidative stress, and neurotransmission responses to pain, has been significantly associated to TMD syndrome.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Androgen receptor (AR) gene mutations are the most frequent cause of 46,XY disorders of sex development (DSD) and are associated with a variety of phenotypes, ranging from phenotypic women [complete androgen insensitivity syndrome (CAIS)] to milder degrees of undervirilization (partial form or PAIS) or men with only infertility (mild form or MAIS). OBJECTIVE The aim of the study was to characterize the contribution of the AR gene to the molecular cause of 46,XY DSD in a series of Spanish patients. SETTING We studied a series of 133 index patients with 46,XY DSD in whom gonads were differentiated as testes, with phenotypes including varying degrees of undervirilization, and in whom the AR gene was the first candidate for a molecular analysis. METHODS The AR gene was sequenced (exons 1 to 8 with intronic flanking regions) in all patients and in family members of 61% of AR-mutated gene patients. RESULTS AR gene mutations were found in 59 individuals (44.4% of index patients), of whom 46 (78%) were CAIS and 13 (22%) PAIS. Fifty-seven different mutations were found: 21.0% located in exon 1, 15.8% in exons 2 and 3, 57.9% in exons 4-8, and 5.3% intronic. Twenty-three mutations (40.4%) had been previously described and 34 (59.6%) were novel. CONCLUSIONS AR gene mutation is the most frequent cause of 46,XY DSD, with a clearly higher frequency in the complete phenotype. Mutations spread along the whole coding sequence, including exon 1. This series shows that 60% of mutations detected during the period 2002-2009 were novel.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Arbuscular mycorrhizal fungi are important symbionts that enhance plant growth. They were thought to have been asexual for hundreds of millions of years. A new study reveals that the fungi actually possess highly conserved genetic machinery for completion of meiosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sex-biased dispersal is an almost ubiquitous feature of mammalian life history, but the evolutionary causes behind these patterns still require much clarification. A quarter of a century since the publication of seminal papers describing general patterns of sex-biased dispersal in both mammals and birds, we review the advances in our theoretical understanding of the evolutionary causes of sex-biased dispersal, and those in statistical genetics that enable us to test hypotheses and measure dispersal in natural populations. We use mammalian examples to illustrate patterns and proximate causes of sex-biased dispersal, because by far the most data are available and because they exhibit an enormous diversity in terms of dispersal strategy, mating and social systems. Recent studies using molecular markers have helped to confirm that sex-biased dispersal is widespread among mammals and varies widely in direction and intensity, but there is a great need to bridge the gap between genetic information, observational data and theory. A review of mammalian data indicates that the relationship between direction of sex-bias and mating system is not a simple one. The role of social systems emerges as a key factor in determining intensity and direction of dispersal bias, but there is still need for a theoretical framework that can account for the complex interactions between inbreeding avoidance, kin competition and cooperation to explain the impressive diversity of patterns.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The overwhelming predominance of sexual reproduction in nature is surprising given that sex is expected to confer profound costs in terms of production of males and the breakup of beneficial allele combinations. Recognition of these theoretical costs was the inspiration for a large body of empirical research-typically focused on comparing sexual and asexual organisms, lineages, or genomes-dedicated to identifying the advantages and maintenance of sex in natural populations. Despite these efforts, why sex is so common remains unclear. Here, we argue that we can generate general insights into the advantages of sex by taking advantage of parthenogenetic taxa that differ in such characteristics as meiotic versus mitotic offspring production, ploidy level, and single versus multiple and hybrid versus non-hybrid origin. We begin by evaluating benefits that sex can confer via its effects on genetic linkage, diversity, and heterozygosity and outline how the three classes of benefits make different predictions for which type of parthenogenetic lineage would be favored over others. Next, we describe the type of parthenogenetic model system (if any) suitable for testing whether the hypothesized benefit might contribute to the maintenance of sex in natural populations, and suggest groups of organisms that fit the specifications. We conclude by discussing how empirical estimates of characteristics such as time since derivation and number of independent origins of asexual lineages from sexual ancestors, ploidy levels, and patterns of molecular evolution from representatives of these groups can be used to better understand which mechanisms maintain sex in natural populations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Les changements environnementaux, tels la température ou les maladies infectieuses, peuvent influencer l'évolution en induisant de la sélection, mais ceci à la seule condition qu'il y ait assez de diversité génétique pour les traits en question ou pour l'expression plastique de ces traits. Au cours cette thèse, nous avons étudié l'effet de potentielles pressions environnementales sur différents phénotypes de trois représentants des sous familles des salmonidés: l'ombre commun (Thymallus thymallus; Thymallinae), la truite de rivière {Salmo trutta; Salmoninae) et le corégone Coregonus palaea (Coregoninae). Les salmonidés se prêtent particulièrement bien à ce type d'expériences car étant hautement sensibles aux conditions environnementales, ils montrent une large variabilité dans leurs traits morphologiques, comportementaux ainsi que d'histoire de vie, tout en bénéficiant d'un large intérêt général. Nous avons testé si le sexe de l'ombre commun pouvait être modifié par la température, ce qui pourrait ainsi expliquer un changement abrupte de sex ratio observé dans l'une des plus grandes populations de Suisse. Nous n'avons trouvé aucun indice permettant de conclure que la température puisse induire ce changement chez l'ombre commun ou chez la truite de rivière. De plus nous avons étudié la plasticité de développement ainsi que d'éclosion, et avons observé des différences entre familles ainsi qu'entre populations. Alors que ces différences comportementales entre populations suggéraient une adaptation aux conditions environnementales locales, cette prédiction n'a pas été confirmée par une expérience de transplantation réciproque d'embryons entre cinq rivières de la même région. Cette étude a montré que les embryons ne survivaient pas mieux dans leur rivière d'origine, indiquant donc une absence d'adaptation locale. Nous avons aussi montré que la mortalité embryonnaire était influencée autant par des "bons gènes" que par des "gènes compatibles", que la qualité des mâles pouvait être signalée par leur coloration, et que le fait d'élever des poissons dans une pisciculture pouvait aboutir a des relations contre-intuitives entre la coloration des mâles et la qualité de leur jeunes. Nos résultats contribuent ainsi à une meilleure compréhension de l'effet de diverses pressions environnementales sur la morphologie, le comportement ou les traits d'histoire de vie chez les salmonidés. - Environmental changes, such as changes in temperatures or infection levels, can induce selection and drive evolution if there is sufficient genetic variation for the traits or the plasticity in trait expression. In this thesis, we investigated the influence of potential environmental stressors on various phenotypes in representatives of the three salmonid subfamilies: the European grayling (Thymallus thymallus; Thymallinae), the brown trout (,Salmo trutta; Salmoninae), and the whitefish Coregonus palaea (Coregoninae). Salmonids are ideal study species, as they seem sensitive to changing environmental conditions, show considerable variability in morphological, behavioral, and life history traits, and are of broad public interest. We investigated whether temperature-induced sex reversal could explain the sex-ratio distortion found in one of Switzerland's largest grayling populations. We found no evidence of temperature-induced sex reversal in either graylings or brown trout. We also examined plasticity in embryo development and the timing of hatching. We found variation at the level of family and population. Although behavioral differences between populations suggested adaptation to local environmental conditions, no indications of local adaptation could be found in reciprocal transplant experiments carried out over five rivers in the same region. We also demonstrate that embryo development and viability is influenced by 'good genes' and 'compatible genes', that the genetic quality of sires can be signaled by their grey coloration, and that raising larvae in a hatchery environment can produce counter-intuitive relationships between male phenotypes and offspring viability. Our results contribute to the understanding of how changing environmental conditions affect the phenotypes and the heritability of early life-history traits in salmonids.