1000 resultados para Satélites artificiais de navegação


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work proposes a new autonomous navigation strategy assisted by genetic algorithm with dynamic planning for terrestrial mobile robots, called DPNA-GA (Dynamic Planning Navigation Algorithm optimized with Genetic Algorithm). The strategy was applied in environments - both static and dynamic - in which the location and shape of the obstacles is not known in advance. In each shift event, a control algorithm minimizes the distance between the robot and the object and maximizes the distance from the obstacles, rescheduling the route. Using a spatial location sensor and a set of distance sensors, the proposed navigation strategy is able to dynamically plan optimal collision-free paths. Simulations performed in different environments demonstrated that the technique provides a high degree of flexibility and robustness. For this, there were applied several variations of genetic parameters such as: crossing rate, population size, among others. Finally, the simulation results successfully demonstrate the effectiveness and robustness of DPNA-GA technique, validating it for real applications in terrestrial mobile robots.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work proposes a new autonomous navigation strategy assisted by genetic algorithm with dynamic planning for terrestrial mobile robots, called DPNA-GA (Dynamic Planning Navigation Algorithm optimized with Genetic Algorithm). The strategy was applied in environments - both static and dynamic - in which the location and shape of the obstacles is not known in advance. In each shift event, a control algorithm minimizes the distance between the robot and the object and maximizes the distance from the obstacles, rescheduling the route. Using a spatial location sensor and a set of distance sensors, the proposed navigation strategy is able to dynamically plan optimal collision-free paths. Simulations performed in different environments demonstrated that the technique provides a high degree of flexibility and robustness. For this, there were applied several variations of genetic parameters such as: crossing rate, population size, among others. Finally, the simulation results successfully demonstrate the effectiveness and robustness of DPNA-GA technique, validating it for real applications in terrestrial mobile robots.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lung cancer is the most common of malignant tumors, with 1.59 million new cases worldwide in 2012. Early detection is the main factor to determine the survival of patients affected by this disease. Furthermore, the correct classification is important to define the most appropriate therapeutic approach as well as suggest the prognosis and the clinical disease evolution. Among the exams used to detect lung cancer, computed tomography have been the most indicated. However, CT images are naturally complex and even experts medical are subject to fault detection or classification. In order to assist the detection of malignant tumors, computer-aided diagnosis systems have been developed to aid reduce the amount of false positives biopsies. In this work it was developed an automatic classification system of pulmonary nodules on CT images by using Artificial Neural Networks. Morphological, texture and intensity attributes were extracted from lung nodules cut tomographic images using elliptical regions of interest that they were subsequently segmented by Otsu method. These features were selected through statistical tests that compare populations (T test of Student and U test of Mann-Whitney); from which it originated a ranking. The features after selected, were inserted in Artificial Neural Networks (backpropagation) to compose two types of classification; one to classify nodules in malignant and benign (network 1); and another to classify two types of malignancies (network 2); featuring a cascade classifier. The best networks were associated and its performance was measured by the area under the ROC curve, where the network 1 and network 2 achieved performance equal to 0.901 and 0.892 respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Desde sempre que a tecnologia tem procurado ajudar, complementar ou mesmo substituir o ser humano em todas as suas tarefas e necessidades mais tediosas e/ou perigosas. A indústria automóvel é das que mais investe na investigação e desenvolvimento desta área, procurando desenvolver viaturas inteligentes, baseados em condução autónoma que ajudem o ser humano enquanto condutor, seja ao nível do conforto como da segurança. Em Portugal, no Festival Nacional de Robótica, existe uma prova onde se aplicam conceitos de decisão, controlo e visão para a condução autónoma num ambiente à escala. É com este conceito em mente que se executa este projeto, com a intenção de construir um veículo à escala, com direção de Ackerman, com a capacidade de se conduzir sem a intervenção ou controlo humano, que possa ser também utilizado na referida prova de competição. O projeto criado é baseado num sistema de controlo de baixo nível, responsável por controlar a velocidade, direção e travagem do veículo, sob comando de um sistema de alto nível baseado em visão computacional. O sistema desenvolvido foi testado, com sucesso, numa fase preliminar na prova a que se destinava. A versão atual do veículo inclui duas câmaras (uma delas móvel) para aquisição de informação múltipla, e codificadores nas rodas para um controlo mais preciso da velocidade do veículo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Esta dissertação tem como objetivo desenvolver um modelo de redes neuronais artificiais para aferir as caraterísticas das habitações que mais influenciam o preço na Ilha do Sal, em Cabo Verde. Foram consideradas caraterísticas como: área, número de quartos, existência de varandas, existência de terraços, número de casas de banho, localização do imóvel, número de andares e proximidade com instituições públicas. A amostra utilizada considerou 1092 habitações no período de 2009 a 2014. Para além da análise baseada no desenvolvimento do modelo de redes neuronais, efetuou-se a análise pela estimação do modelo dos preços hedónicos. Os resultados do modelo de redes neuronais artificiais permitiram verificar que o preço das habitações é fortemente influenciado pela área, e em seguida pela localização. A existência de caraterísticas, tais como a proximidade com a câmara municipal e finanças e existência de varandas, são as variáveis que menos influenciam o preço das habitações na Ilha do Sal. Os resultados da estimação com o modelo dos preços hedónicos indicam que o preço das habitações é fortemente influenciado por algumas variáveis representativas de características estruturais, localização e de vizinhança. Algumas dessas variáveis têm efeito estatisticamente significativo positivo no preço tais como, a localização do imóvel em Algodoeiro- Santa Maria, o número de quartos e a área. Outras variáveis têm efeito estatisticamente significativo negativo no preço, tais como a localização do imóvel no Bairro Novo e a proximidade com o hospital. Os resultados mostram que comparativamente com o modelo de preços hedónicos, o modelo de redes neuronais artificiais representa uma melhor alternativa para a previsão dos preços das habitações na Ilha do Sal, isto considerando a comparação dos erros estimados entre os modelos e as medidas de desempenho comumente utilizadas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Forecast is the basis for making strategic, tactical and operational business decisions. In financial economics, several techniques have been used to predict the behavior of assets over the past decades.Thus, there are several methods to assist in the task of time series forecasting, however, conventional modeling techniques such as statistical models and those based on theoretical mathematical models have produced unsatisfactory predictions, increasing the number of studies in more advanced methods of prediction. Among these, the Artificial Neural Networks (ANN) are a relatively new and promising method for predicting business that shows a technique that has caused much interest in the financial environment and has been used successfully in a wide variety of financial modeling systems applications, in many cases proving its superiority over the statistical models ARIMA-GARCH. In this context, this study aimed to examine whether the ANNs are a more appropriate method for predicting the behavior of Indices in Capital Markets than the traditional methods of time series analysis. For this purpose we developed an quantitative study, from financial economic indices, and developed two models of RNA-type feedfoward supervised learning, whose structures consisted of 20 data in the input layer, 90 neurons in one hidden layer and one given as the output layer (Ibovespa). These models used backpropagation, an input activation function based on the tangent sigmoid and a linear output function. Since the aim of analyzing the adherence of the Method of Artificial Neural Networks to carry out predictions of the Ibovespa, we chose to perform this analysis by comparing results between this and Time Series Predictive Model GARCH, developing a GARCH model (1.1).Once applied both methods (ANN and GARCH) we conducted the results' analysis by comparing the results of the forecast with the historical data and by studying the forecast errors by the MSE, RMSE, MAE, Standard Deviation, the Theil's U and forecasting encompassing tests. It was found that the models developed by means of ANNs had lower MSE, RMSE and MAE than the GARCH (1,1) model and Theil U test indicated that the three models have smaller errors than those of a naïve forecast. Although the ANN based on returns have lower precision indicator values than those of ANN based on prices, the forecast encompassing test rejected the hypothesis that this model is better than that, indicating that the ANN models have a similar level of accuracy . It was concluded that for the data series studied the ANN models show a more appropriate Ibovespa forecasting than the traditional models of time series, represented by the GARCH model

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents a study about a the Baars-Franklin architecture, which defines a model of computational consciousness, and use it in a mobile robot navigation task. The insertion of mobile robots in dynamic environments carries a high complexity in navigation tasks, in order to deal with the constant environment changes, it is essential that the robot can adapt to this dynamism. The approach utilized in this work is to make the execution of these tasks closer to how human beings react to the same conditions by means of a model of computational consci-ousness. The LIDA architecture (Learning Intelligent Distribution Agent) is a cognitive system that seeks tomodel some of the human cognitive aspects, from low-level perceptions to decision making, as well as attention mechanism and episodic memory. In the present work, a computa-tional implementation of the LIDA architecture was evaluated by means of a case study, aiming to evaluate the capabilities of a cognitive approach to navigation of a mobile robot in dynamic and unknown environments, using experiments both with virtual environments (simulation) and a real robot in a realistic environment. This study concluded that it is possible to obtain benefits by using conscious cognitive models in mobile robot navigation tasks, presenting the positive and negative aspects of this approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pr’Além do Mare Nostrum – Um Guia para a Navegação Romano no Atlântico é uma ferramenta didáctica e informativa pensada para as crianças e jovens em idade escolar, a partir do 2º Ciclo do Ensino Básico. Os seus conteúdos visam promover o conhecimento do domínio marítimo romano em Portugal; despertar para a herança cultural romana e para as marcas na paisagem dessa presença no nosso território; compreender o que é a Arqueologia Subaquática; reconhecer a importância da proteção do Património Cultural Subaquático; dar a conhecer os principais museus onde se podem observar materiais arqueológicos provenientes de contextos subaquáticos e organizar visitas a museus e sítios arqueológicos. A tabela anexa, pensada para os professores, apresenta uma articulação entre os conteúdos do Guia e os programas escolares das disciplinas de História e Geografia de Portugal do 2º Ciclo; História e Geografia do 3º Ciclo do Ensino Básico; e História, Geografia e Latim do Secundário. No entanto, e apesar de ter uma finalidade educativa e uma estreita ligação com os conteúdos escolares, o Guia é igualmente uma base informativa a ter em consideração pelos Pais, Encarregados de Educação e todos os interessados pela História e pela Arqueologia Subaquática.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Artificial lakes must differ from natural lakes in important structural and functional aspects that need to be understood so that these ecosystems can be properly managed. The aim of this work was to test the hypothesis that the artificial lakes (impoundments) in the semi-arid region of the Rio Grande do Norte State are more eutrophic and turbid and have different trophic structure when compared to the natural coastal lakes that occur in the humid eastern coast of the State. To test this hypothesis, 10 natural lakes and 8 artificial lakes with about 100 ha were sampled between September and November 2005 for the determination of some limnological variables and the abundance of the main fish species, which were grouped in three trophic guilds: facultative piscivores, facultative planktivores and omnivores. The results show that the artificial lakes had significantly higher concentrations of total nitrogen, total phosphorus, chlorophyll a , total and volatile suspended solids than the natural lakes. Results also show that the values of pH, total alkalinity, electric conductivity, turbidity as well as the coefficient of vertical attenuation of light were significantly higher in the artificial lakes than in the natural lakes. In the artificial lakes, the abundance of facultative planktivores was significantly higher, while the abundance of facultative piscivores significantly lower than in the natural lakes. There was no significant difference in the abundance of omnivorous fish between the two types of lakes. These results suggest that the increase in turbidity together with the other changes in the water quality of the artificial lakes, modifies the trophic structure of the fish communities reducing the importance of piscivores and the length of the food chains

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Forecast is the basis for making strategic, tactical and operational business decisions. In financial economics, several techniques have been used to predict the behavior of assets over the past decades.Thus, there are several methods to assist in the task of time series forecasting, however, conventional modeling techniques such as statistical models and those based on theoretical mathematical models have produced unsatisfactory predictions, increasing the number of studies in more advanced methods of prediction. Among these, the Artificial Neural Networks (ANN) are a relatively new and promising method for predicting business that shows a technique that has caused much interest in the financial environment and has been used successfully in a wide variety of financial modeling systems applications, in many cases proving its superiority over the statistical models ARIMA-GARCH. In this context, this study aimed to examine whether the ANNs are a more appropriate method for predicting the behavior of Indices in Capital Markets than the traditional methods of time series analysis. For this purpose we developed an quantitative study, from financial economic indices, and developed two models of RNA-type feedfoward supervised learning, whose structures consisted of 20 data in the input layer, 90 neurons in one hidden layer and one given as the output layer (Ibovespa). These models used backpropagation, an input activation function based on the tangent sigmoid and a linear output function. Since the aim of analyzing the adherence of the Method of Artificial Neural Networks to carry out predictions of the Ibovespa, we chose to perform this analysis by comparing results between this and Time Series Predictive Model GARCH, developing a GARCH model (1.1).Once applied both methods (ANN and GARCH) we conducted the results' analysis by comparing the results of the forecast with the historical data and by studying the forecast errors by the MSE, RMSE, MAE, Standard Deviation, the Theil's U and forecasting encompassing tests. It was found that the models developed by means of ANNs had lower MSE, RMSE and MAE than the GARCH (1,1) model and Theil U test indicated that the three models have smaller errors than those of a naïve forecast. Although the ANN based on returns have lower precision indicator values than those of ANN based on prices, the forecast encompassing test rejected the hypothesis that this model is better than that, indicating that the ANN models have a similar level of accuracy . It was concluded that for the data series studied the ANN models show a more appropriate Ibovespa forecasting than the traditional models of time series, represented by the GARCH model

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Mecânica, 2016.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O princípio do posicionamento por GNSS baseia-se, resumidamente, na resolução de um problema matemático que envolve a observação das distâncias do utilizador a um conjunto de satélites com coordenadas conhecidas. A posição resultante pode ser calculada em modo absoluto ou relativo. O posicionamento absoluto necessita apenas de um recetor para a determinação da posição. Por sua vez, o posicionamento relativo implica a utilização de estações de referência e envolve a utilização de mais recetores para além do pertencente ao próprio utilizador. Assim, os métodos mais utilizados na determinação da posição de uma plataforma móvel, com exatidão na ordem dos centímetros, baseiam-se neste último tipo de posicionamento. Contudo, têm a desvantagem de estarem dependentes de estações de referência, com um alcance limitado, e requerem observações simultâneas dos mesmos satélites por parte da estação e do recetor. Neste sentido foi desenvolvida uma nova metodologia de posicionamento GNSS em modo absoluto, através da modelação ou remoção dos erros associados a cada componente das equações de observação, da utilização de efemérides precisas e correções aos relógios dos satélites. Este método de posicionamento tem a designação Precise Point Positioning (PPP) e permite manter uma elevada exatidão, equivalente à dos sistemas de posicionamento relativo. Neste trabalho, após um estudo aprofundado do tema, foi desenvolvida uma aplicação PPP, de índole académica, com recurso à biblioteca de classes C++ do GPS Toolkit, que permite determinar a posição e velocidade do recetor em modo cinemático e em tempo real. Esta aplicação foi ensaiada utilizando dados de observação de uma estação estática (processados em modo cinemático) e de uma estação em movimento instalada no NRP Auriga. Os resultados obtidos permitiram uma exatidão para a posição na ordem decimétrica e para a velocidade na ordem do cm/s.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Avaliámos a importância das bermas das estradas como áreas de refúgio para pequenos mamíferos, em paisagens Mediterrânicas intensivamente pastoreadas, e comparámos esta possível função das estradas como refúgio com o papel fundamental das galerias ripícolas como reservatórios de diversidade biológica. Para esse efeito, foram realizadas capturas de micromamíferos em dois segmentos de estrada e em duas ribeiras da região de Évora. Foram capturados 457 indivíduos de cinco espécies diferentes. Mus spretus foi a espécie mais capturada, seguida de Crocidura russula e Apodemus sylvaticus. M. spretus apresentou uma maior abundância nas bermas de estrada do que na vegetação ripicola, enquanto que a abundância de C. russula e A. sylvaticus era semelhante para ambos os habitats. O número de capturas das três espécies foi bastante superior dentro dos habitats lineares do que na matriz circundante. Os indivíduos de M. spretus eram maiores nas ribeiras, mas significativamente menores fora dos habitats lineares, e os indivíduos de C. russula apresentavam uma melhor condição corporal nas bermas das estradas. Tanto as estradas como as ribeiras exerceram um forte efeito de barreira aos movimentos dos micromamíferos. Concluímos então que as bermas das estradas actuam como habitat de refúgio em áreas sub-óptimas das paisagens Mediterrânicas. ABSTRACT: We assessed the importance of road verges as refuge areas for small mammals, in highly intensified grazed pastures on a Mediterranean landscape, and compared road function as refuge with the fundamental role of riparian galleries as reservoirs of biological diversity. For this purpose, a small mammal trapping study was undertaken on road verges and on small stream sides. We sampled two road segments and two streams in the vicinity of Évora, Portugal. We captured a total of 457 individuals of five different species. Mus spretus was the most common species captured, followed by Crocidura russula and Apodemus sylvaticus. M. spretus was more abundant on road verges than on riparian strips, whilst the abundance of C. russula and A. sylvaticus were similar in the two habitats. Captures of the three species were much higher inside both linear habitats than on the surrounding matrix. M. spretus were bigger on stream sites but significantly smaller outside the linear habitats and C. russula had better body conditions on roads. 8oth roads and streams exerted a strong barrier effect to small mammals' movements. We conclude that roadside verges act as refuge habitat in sub-optimal Mediterranean landscapes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work aims to obtain a low-cost virtual sensor to estimate the quality of LPG. For the acquisition of data from a distillation tower, software HYSYS ® was used to simulate chemical processes. These data will be used for training and validation of an Artificial Neural Network (ANN). This network will aim to estimate from available simulated variables such as temperature, pressure and discharge flow of a distillation tower, the mole fraction of pentane present in LPG. Thus, allowing a better control of product quality