947 resultados para Saccharomyces cerevisiae YM4271


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The genomes of many strains of baker’s yeast, Saccharomyces cerevisiae, contain multiple repeats of the copper-binding protein Cup1. Cup1 is a member of the metallothionein family, and is found in a tandem array on chromosome VIII. In this thesis, I describe studies that characterized these tandem arrays and their mechanism of formation across diverse strains of yeast. I show that CUP1 arrays are an illuminating model system for observing recombination in eukaryotes, and describe insights derived from these observations.

In our first study, we analyzed 101 natural isolates of S. cerevisiae in order to examine the diversity of CUP1-containing repeats across different strains. We identified five distinct classes of repeats that contain CUP1. We also showed that some strains have only a single copy of CUP1. By comparing the sequences of all the strains, we were able to elucidate the mechanism of formation of the CUP1 tandem arrays, which involved unequal non-homologous recombination events starting from a strain that had only a single CUP1 gene. Our observation of CUP1 repeat formation allows more general insights about the formation of tandem repeats from single-copy genes in eukaryotes, which is one of the most important mechanisms by which organisms evolve.

In our second study, we delved deeper into our mechanistic investigations by measuring the relative rates of inter-homolog and intra-/inter-sister chromatid recombination in CUP1 tandem arrays. We used a diploid strain that is heterozygous both for insertion of a selectable marker (URA3) inside the tandem array, and also for markers at either end of the array. The intra-/inter-sister chromatid recombination rate turned out to be more than ten-fold greater than the inter-homolog rate. Moreover, we found that loss of the proteins Rad51 and Rad52, which are required for most inter-homolog recombination, did not greatly reduce recombination in the CUP1 tandem repeats. Additionally, we investigated the effects of elevated copper levels on the rate of each type of recombination at the CUP1 locus. Both types of recombination are increased at high concentrations of copper (as is known to be the case for CUP1 transcription). Furthermore, the inter-homolog recombination rate at the CUP1 locus is higher than the average over the genome during mitosis, but is lower than the average during meiosis.

The research described in Chapter 2 is published in 2014.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water-insoluble glucan was isolated from the baker’s yeast Saccharomyces cerevisiae. The yeast cells were treated with alkali and the residue then with acid. Chemical and NMR (1D and 2D) analyses showed that a linear (1→3)-β-glucan was purified that was not contaminated with other carbohydrates, proteins or phenolic compounds. The effects of the glucan on wound healing were assessed in human venous ulcers by histopathological analysis after 30 days of topical treatment. (1→3)-β-glucan enhanced ulcer healing and increased epithelial hyperplasia, as well as increased inflammatory cells, angiogenesis and fibroblast proliferation. In one patient who had an ulcer that would not heal for over 15 years, glucan treatment caused a 67.8% decrease in the area of the ulcer. This is the first study to investigate the effects of (1→3)-β-glucan on venous ulcer healing in humans; our findings suggest that this glucan is a potential natural biological response modifier in wound healing

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water-insoluble glucan was isolated from the baker’s yeast Saccharomyces cerevisiae. The yeast cells were treated with alkali and the residue then with acid. Chemical and NMR (1D and 2D) analyses showed that a linear (1→3)-β-glucan was purified that was not contaminated with other carbohydrates, proteins or phenolic compounds. The effects of the glucan on wound healing were assessed in human venous ulcers by histopathological analysis after 30 days of topical treatment. (1→3)-β-glucan enhanced ulcer healing and increased epithelial hyperplasia, as well as increased inflammatory cells, angiogenesis and fibroblast proliferation. In one patient who had an ulcer that would not heal for over 15 years, glucan treatment caused a 67.8% decrease in the area of the ulcer. This is the first study to investigate the effects of (1→3)-β-glucan on venous ulcer healing in humans; our findings suggest that this glucan is a potential natural biological response modifier in wound healing

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Negli ultimi anni, è aumentato notevolmente l'interesse per piante e prodotti vegetali, e composti da essi derivati od estratti, in alternativa ai conservanti chimici per prevenire o ritardare lo sviluppo microbico negli alimenti. Questo deriva dalla percezione negativa, ormai diffusa a livello pubblico, nei confronti di sostanze di sintesi che sono ampiamente utilizzate come conservanti nell’industria alimentare. Sono stati effettuati diversi studi sull’attività antimicrobica di questi composti negli alimenti, anche se il loro utilizzo a livello industriale è limitato. Ciò dipende dalla difficile standardizzazione di queste sostanze, dovuta alla variabilità della matrice alimentare che ne può alterarne l’attività antimicrobica. In questa sperimentazione si sono utilizzati l’olio essenziale di Sateureja montana e l’estratto di Cotinus coggygria e sono state fatte delle prove preliminari, determinandone le componenti volatili tramite gas-cromatografia abbinata a microestrazione in fase solida. Sono stati selezionati un ceppo di Listeria monocytogenes (Scott A) e uno di Saccharomyces cerevisiae (SPA), e sono stati utilizzati per realizzare curve di morte termica in sistema modello e in sistema reale. Dai risultati ottenuti si può affermare che Satureja montana e Cotinus coggygria possono essere presi in considerazione come antimicrobici naturali da impiegare per la stabilizzazione di alimenti, nonché per ridurre l’entità dei trattamenti termici atti a salvaguardare le proprietà nutrizionali ed organolettiche di alimenti, come ad esempio succhi di frutta, garantendone la sicurezza e qualità microbiologica.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Succinate is a naturally occurring metabolite in organism’s cell and is industrially important chemical with various applications in food and pharmaceutical industry. It is also widely used to produce bio-degradable plastics, surfactants, detergents etc. In last decades, emphasis has been given to bio-based chemical production using industrial biotechnology route rather than fossil-based production considering sustainability and environment friendly economy. In this thesis I am presenting a computational model for silico metabolic engineering of Saccharomyces cerevisiae for large scale production of succinate. For metabolic modelling, I have used OptKnock and OptGene optimization algorithms to identify the reactions to delete from the genome-scale metabolic model of S. cerevisiae to overproduce succinate by coupling with organism’s growth. Both OptKnock and OptGene proposed numerous straightforward and non-intuitive deletion strategies when number of constraints including growth constraint to the model were applied. The most interesting strategy identified by both algorithms was deletion combination of pyruvate decarboxylase and Ubiquinol:ferricytochrome c reductase(respiratory enzyme) reactions thereby also suggesting anaerobic fermentation of the organism in glucose medium. Such strategy was never reported earlier for growth-coupled succinate production in S.cerevisiae.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water-insoluble glucan was isolated from the baker’s yeast Saccharomyces cerevisiae. The yeast cells were treated with alkali and the residue then with acid. Chemical and NMR (1D and 2D) analyses showed that a linear (1→3)-β-glucan was purified that was not contaminated with other carbohydrates, proteins or phenolic compounds. The effects of the glucan on wound healing were assessed in human venous ulcers by histopathological analysis after 30 days of topical treatment. (1→3)-β-glucan enhanced ulcer healing and increased epithelial hyperplasia, as well as increased inflammatory cells, angiogenesis and fibroblast proliferation. In one patient who had an ulcer that would not heal for over 15 years, glucan treatment caused a 67.8% decrease in the area of the ulcer. This is the first study to investigate the effects of (1→3)-β-glucan on venous ulcer healing in humans; our findings suggest that this glucan is a potential natural biological response modifier in wound healing

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fungi, including the yeast Saccharomyces cerevisiae, lack ferritin and use vacuoles as iron storage organelles. This work explored how plant ferritin expression influenced baker's yeast iron metabolism. Soybean seed ferritin H1 (SFerH1) and SFerH2 genes were cloned and expressed in yeast cells. Both soybean ferritins assembled as multimeric complexes, which bound yeast intracellular iron in vivo and, consequently, induced the activation of the genes expressed during iron scarcity. Soybean ferritin protected yeast cells that lacked the Ccc1 vacuolar iron detoxification transporter from toxic iron levels by reducing cellular oxidation, thus allowing growth at high iron concentrations. Interestingly, when simultaneously expressed in ccc1Δ cells, SFerH1 and SFerH2 assembled as heteropolymers, which further increased iron resistance and reduced the oxidative stress produced by excess iron compared to ferritin homopolymer complexes. Finally, soybean ferritin expression led to increased iron accumulation in both wild-type and ccc1Δ yeast cells at certain environmental iron concentrations.