901 resultados para SPACE USE
Resumo:
The goal of our study is to determine accurate time series of geophysical Earth rotation excitations to learn more about global dynamic processes in the Earth system. For this purpose, we developed an adjustment model which allows to combine precise observations from space geodetic observation systems, such as Satellite Laser Ranging (SLR), Global Navigation Satellite Systems (GNSS), Very Long Baseline Interferometry (VLBI), Doppler Orbit determination and Radiopositioning Integrated on Satellite (DORIS), satellite altimetry and satellite gravimetry in order to separate geophysical excitation mechanisms of Earth rotation. Three polar motion time series are applied to derive the polar motion excitation functions (integral effect). Furthermore we use five time variable gravity field solutions from Gravity Recovery and Climate Experiment (GRACE) to determine not only the integral mass effect but also the oceanic and hydrological mass effects by applying suitable filter techniques and a land-ocean mask. For comparison the integral mass effect is also derived from degree 2 potential coefficients that are estimated from SLR observations. The oceanic mass effect is also determined from sea level anomalies observed by satellite altimetry by reducing the steric sea level anomalies derived from temperature and salinity fields of the oceans. Due to the combination of all geodetic estimated excitations the weaknesses of the individual processing strategies can be reduced and the technique-specific strengths can be accounted for. The formal errors of the adjusted geodetic solutions are smaller than the RMS differences of the geophysical model solutions. The improved excitation time series can be used to improve the geophysical modeling.
Resumo:
Dissolved barium has been shown to have the potential to distinguish Eurasian from North American (NA) river runoff. As part of the ARK-XXII/2 Polarstern expedition in summer 2007, Ba was analyzed in the Barents, Kara, Laptev seas, and the Eurasian Basins as well as the Makarov Basin up to the Alpha and Mendeleyev Ridges. By combining salinity, d18O and initial phosphate corrected for mineralization with oxygen (PO4*) or N/P ratios we identified the water mass fractions of meteoric water, sea ice meltwater, and marine waters of Atlantic as well as Pacific origin in the upper water column. In all basins inside the lower halocline layer and the Arctic intermediate waters we find Ba concentrations close to those of the Fram Strait branch of the lower halocline (41-45 nM), reflecting the composition of the incoming Atlantic water. A layer of upper halocline water (UHW) with higher Ba concentrations (45-55 nM) is identified in the Makarov Basin. Atop of the UHW, the Surface Mixed Layer (SML), including the summer and winter mixed layers, has high concentrations of Ba (58-67 nM). In the SML of the investigated area of the central Arctic the meteoric fraction can be identified by assuming a conservative behavior of Ba to be primarily of Eurasian river origin. However, in productive coastal regions biological removal compromises the use of Ba to distinguish between Eurasian and NA rivers. As a consequence, the NA river water fraction is underestimated in productive surface waters or waters that have passed a productive region, whereas this fraction is overestimated in subsurface waters containing remineralised Ba, particularly when these waters have passed productive shelf regions. Especially in the Laptev Sea and small regions in the Barents Sea, Ba concentrations are low in surface waters. In the Laptev Sea exceptionally high Ba concentrations in shelf bottom waters indicate that Ba is removed from surface waters to deep waters by biological activity enhanced by increasing ice-free conditions as well as by scavenging by organic matter of terrestrial origin. We interpret high Ba concentrations in the UHW of the Makarov Basin to result from enrichment by remineralisation in bottom waters on the shelf of the Chukchi Sea and therefore the calculated NA runoff is an artefact. We conclude that no NA runoff can be demonstrated unequivocally anywhere during our expedition with the set of tracers considered here. Small contributions of NA runoff may have been masked by Ba depletion and could only be resolved by supportive tracers on the uptake history. We thus suggest that Ba has to be used with care as it can put limits but not yield quantitative water mass distributions. Only if the extra Ba inputs exceed the cumulative biological uptake the signal can be unequivocally attributed to NA runoff.
Resumo:
The objective of this paper is to address the methodological process of a teaching strategy for training project management complexity in postgraduate programs. The proposal is made up of different methods —intuitive, comparative, deductive, case study, problem-solving Project-Based Learning— and different activities inside and outside the classroom. This integration of methods motivated the current use of the concept of “learning strategy”. The strategy has two phases: firstly, the integration of the competences —technical, behavioral and contextual—in real projects; and secondly, the learning activity was oriented in upper level of knowledge, the evaluating the complexity for projects management in real situations. Both the competences in the learning strategy and the Project Complexity Evaluation are based on the ICB of IPMA. The learning strategy is applied in an international Postgraduate Program —Erasmus Mundus Master of Science— with the participation of five Universities of the European Union. This master program is fruit of a cooperative experience from one Educative Innovation Group of the UPM -GIE-Project-, two Research Groups of the UPM and the collaboration with other external agents to the university. Some reflections on the experience and the main success factors in the learning strategy were presented in the paper
Resumo:
The objective of this paper is to address the methodological process of a teaching strategy for training project management complexity in postgraduate programs. The proposal is made up of different methods —intuitive, comparative, deductive, case study, problem-solving Project-Based Learning— and different activities inside and outside the classroom. This integration of methods motivated the current use of the concept of ―learning strategy‖. The strategy has two phases: firstly, the integration of the competences —technical, behavioral and contextual—in real projects; and secondly, the learning activity was oriented in upper level of knowledge, the evaluating the complexity for projects management in real situations. Both the competences in the learning strategy and the Project Complexity Evaluation are based on the ICB of IPMA. The learning strategy is applied in an international Postgraduate Program —Erasmus Mundus Master of Science— with the participation of five Universities of the European Union. This master program is fruit of a cooperative experience from one Educative Innovation Group of the UPM -GIE-Project-, two Research Groups of the UPM and the collaboration with other external agents to the university. Some reflections on the experience and the main success factors in the learning strategy were presented in the paper.
Resumo:
This project investigates the utility of differential algebra (DA) techniques applied to the problem of orbital dynamics with initial uncertainties in the orbital determination of the involved bodies. The use of DA theory allows the splitting of a common Monte Carlo simulation in two parts: the generation of a Taylor map of the final states with regard to the perturbation in the initial coordinates, and the evaluation of the map for many points. A propagator is implemented exploiting DA techniques, and tested in the field of asteroid impact risk monitoring with the potentially hazardous 2011 AG5 and 2007 VK184 as test cases. Results show that the new method is able to simulate 2.5 million trajectories with a precision good enough for the impact probability to be accurately reproduced, while running much faster than a traditional Monte Carlo approach (in 1 and 2 days, respectively).
Resumo:
The estimation of modal parameters of a structure from ambient measurements has attracted the attention of many researchers in the last years. The procedure is now well established and the use of state space models, stochastic system identification methods and stabilization diagrams allows to identify the modes of the structure. In this paper the contribution of each identified mode to the measured vibration is discussed. This modal contribution is computed using the Kalman filter and it is an indicator of the importance of the modes. Also the variation of the modal contribution with the order of the model is studied. This analysis suggests selecting the order for the state space model as the order that includes the modes with higher contribution. The order obtained using this method is compared to those obtained using other well known methods, like Akaike criteria for time series or the singular values of the weighted projection matrix in the Stochastic Subspace Identification method. Finally, both simulated and measured vibration data are used to show the practicability of the derived technique. Finally, it is important to remark that the method can be used with any identification method working in the state space model.
Resumo:
Stereo video techniques are effective for estimating the space–time wave dynamics over an area of the ocean. Indeed, a stereo camera view allows retrieval of both spatial and temporal data whose statistical content is richer than that of time series data retrieved from point wave probes. We present an application of the Wave Acquisition Stereo System (WASS) for the analysis of offshore video measurements of gravity waves in the Northern Adriatic Sea and near the southern seashore of the Crimean peninsula, in the Black Sea. We use classical epipolar techniques to reconstruct the sea surface from the stereo pairs sequentially in time, viz. a sequence of spatial snapshots. We also present a variational approach that exploits the entire data image set providing a global space–time imaging of the sea surface, viz. simultaneous reconstruction of several spatial snapshots of the surface in order to guarantee continuity of the sea surface both in space and time. Analysis of the WASS measurements show that the sea surface can be accurately estimated in space and time together, yielding associated directional spectra and wave statistics at a point in time that agrees well with probabilistic models. In particular, WASS stereo imaging is able to capture typical features of the wave surface, especially the crest-to-trough asymmetry due to second order nonlinearities, and the observed shape of large waves are fairly described by theoretical models based on the theory of quasi-determinism (Boccotti, 2000). Further, we investigate space–time extremes of the observed stationary sea states, viz. the largest surface wave heights expected over a given area during the sea state duration. The WASS analysis provides the first experimental proof that a space–time extreme is generally larger than that observed in time via point measurements, in agreement with the predictions based on stochastic theories for global maxima of Gaussian fields.
Resumo:
A novel concept for active space debris removal known as Ion Beam Shepherd (IBS) which has been recently presented by our group is investigated. The concept makes use of a highly collimated ion beam to exert the necessary force on a generic debris to modify its orbit and/or attitude from a safe distance in a controlled manner, without the need of docking. After describing the main characteristics of the IBS system, some of the key aspects of thruster plasma and its interaction with the debris are studied, namely, (1) the modeling of the expansion of an plasma beam, based on the quasi-selfsimilarity exhibited by hypersonic plumes, (2) the characterization of the force and torque exerted upon the target debris, and (3) a preliminary evaluation of other plasma-body interactions.
Resumo:
A study supported by the European Space Agency (ESA), in the context of its General Studies Programme, performed an investigation of the possible use of space for studies in pure and applied plasma physics, in areas not traditionally covered by ‘space plasma physics’. A set of experiments have been identified that can potentially provide access to new phenomena and to allow advances in several fields of plasma science. These experiments concern phenomena on a spatial scale (101–104 m) intermediate between what is achievable on the ground and the usual solar system plasma observations. Detailed feasibility studies have been performed for three experiments: active magnetic experiments, largescale discharges and long tether–plasma interactions. The perspectives opened by these experiments are discussed for magnetic reconnection, instabilities, MHD turbulence, atomic excited states kinetics, weakly ionized plasmas,plasma diagnostics, artificial auroras and atmospheric studies. The discussion is also supported by results of numerical simulations and estimates.
Resumo:
Basic effects and dynamical and electrical contact issues in the physics of (electrodynamic space) bare tethers are discussed. Scientific experiments and powerpropulsion applications, including a paradoxical use of bare tethers in outer-planet exploration,are considered.
Resumo:
According to UN provisions in the period from 2007 to 2050 world population will grow up to 9200 million people. In fact, for the first time in history, in the year 2008 world urban population became higher than rural population. The increase of urban areas and their transport infrastructures has influenced agricultural land use due to their irreversible change, especially when they remain as periurban vacant land, losing their character and identity. In the Europe of the nineties, the traditional urban-rural gradient, characterized by a neat contact between both land types, has become so complex that it has change to a gradient in which it is difficult to separate urban and rural land uses. [Antrop 2004]. A literature review has been made on methodologies used for the urban-rural gradient analysis. One of these methodologies was selected that integrates ecological characterization based on the use of spatial metrics and geographical characterization based on spatial components. Cartographical sources used were Corine Land Cover at 1: 100000 scale and the Spanish Land Use Information System at 1:25000 scale. Urban-rural gradient paradigm is an analysis methodology, coming from landscape ecology, which enables to investigate how urbanization provokes changes in ecological patterns and processes into landscape. [Hahs and McDonnell 2006].The present research adapt this methodology to study the urban-rural gradient in the outskirts of Madrid, Toledo and Guadalajara. Both scales (1:25000 and 1:100000) were simultaneously used to reach the next objectives: 1) Analysis of landscape pattern dynamics in relation to distance to the town centre and major infrastructures. 2) Analysis of landscape pattern dynamics in the fringe of protected areas. The paper presents a new approach to the urban-rural relationship which allows better planning and management of urban áreas.
Resumo:
The European Space Agency has initiated, in the context of its General Studies Programme, a study of the possible use of space for studies in pure and applied plasma physics, in areas not traditionally covered by “space plasma physics”. A team of experts has been set-up to review a broad range of area including industrial plasma physics and pure plasma physics, astrophysical and solar-terrestrial areas. A set of experiments have been identified that can potentially provide access to new phenomena and to allow advances in several fields of plasma science. These experiments concern phenomena on spatial scale (102 to104 m) intermediate between what is achievable on ground experiment and usual solar system plasma observations.
Resumo:
A 3-year Project started on November 1 2010, financed by the European Commision within the FP-7 Space Program, and aimed at developing an efficient de-orbit system that could be carried on board by future spacecraft launched into LEO, will be presented. The operational system will deploy a thin uninsulated tape-tether to collect electrons as a giant Langmuir probe, using no propellant/no power supply, and generating power on board. This project will involve free-fall tests, and laboratory hypervelocity-impact and tether-current tests, and design/Manufacturing of subsystems: interface elements, electric control and driving module, electron-ejecting plasma contactor, tether-deployment mechanism/end-mass, and tape samples. Preliminary results to be presented involve: i) devising criteria for sizing the three disparate tape dimensions, affecting mass, resistance, current-collection, magnetic self-field, and survivability against debris itself; ii) assessing the dynamical relevance of tether parameters in implementing control laws to limit oscillations in /off the orbital plane, where passive stability may be marginal; iii) deriving a law for bare-tape current from numerical simulations and chamber tests, taking into account ambient magnetic field, ion ram motion, and adiabatic electron trapping; iv) determining requirements on a year-dormant hollow cathode under long times/broad emission-range operation, and trading-off against use of electron thermal emission; v) determining requirements on magnetic components and power semiconductors for a control module that faces high voltage/power operation under mass/volume limitations; vi) assessing strategies to passively deploy a wide conductive tape that needs no retrieval, while avoiding jamming and ending at minimum libration; vii) evaluating the tape structure as regards conductive and dielectric materials, both lengthwise and in its cross-section, in particular to prevent arcing in triple-point junctions.
Resumo:
Pulse-width modulation is widely used to control electronic converters. One of the most frequently used topologies for high DC voltage/low DC voltage conversion is the Buck converter. These converters are described by a second order system with an LC filter between the switching subsystem and the load. The use of a coil with an amorphous magnetic material core rather than an air core permits the design of smaller converters. If high switching frequencies are used to obtain high quality voltage output, then the value of the auto inductance L is reduced over time. Robust controllers are thus needed if the accuracy of the converter response must be preserved under auto inductance and payload variations. This paper presents a robust controller for a Buck converter based on a state space feedback control system combined with an additional virtual space variable which minimizes the effects of the inductance and load variations when a switching frequency that is not too high is applied. The system exhibits a null steady-state average error response for the entire range of parameter variations. Simulation results and a comparison with a standard PID controller are also presented.
Resumo:
El WCTR es un congreso de reconocido prestigio internacional en el ámbito de la investigación del transporte y aunque las actas publicadas están en formato digital y sin ISSN ni ISBN, lo consideramos lo suficientemente importante como para que se considere en los indicadores. Policies trying to increase walking within urban mobility modal split usually highlight the importance of the functional patterns and the environmental quality of the urban space as major drivers of citizens modal choices. Functional characteristics would be mainly associated to an appropriate mix of land uses within neighbourhoods, whereas environmental quality would be associated to the characteristics of urban spaces. The purpose of this research is threefold: first, to identify relevant proxy indicators, which could characterize pedestrian-friendly land use mix and environmental quality. Second, to assess, for both traits, existing disparities among neighbourhoods in a major metropolitan area. And finally, to explore the association between both indicators and children mobility patterns: according to their built environment, which neighbourhoods have a greater proportion of children and, how is their mobility? Using data from the 2004 household mobility survey in the 128 neighbourhoods of the municipality of Madrid, this paper concludes that potentially favourable conditions at the neighbourhood level seem to have only a modest influence in,mobility patterns , in terms of both, selection of closer destinations and a higher share of walking within modal split. The citys policy choices, with intensive investment in road and public transport infrastructure may explain why short-distance mobility is not as important as it could have been expected in those neighbourhoods with more pedestrian-friendly conditions. The metropolitan transport system is providing mobility conditions, which make far-away destinations attractive to most citizens.