941 resultados para SOL-GEL CHEMISTRY
Resumo:
The effect of concentration on the structure of SnO2 colloids in aqueous suspension, on their spatial correlation and on the gelation process was studied by small angle x-ray scattering (SAXS). The shape of the experimental SAXS curves varies with suspension concentration. For diluted suspensions ([SnO2] less than or equal to 0.13 mol L-1), SAXS results indicate the presence of colloidal fractal aggregates with an internal correlation length xi congruent to 20 Angstrom, without any noticeable spatial correlation between them. This suggests that the aggregates are spatially arranged without any significant interaction like in ideal gas structures. For higher concentrations ([SnO2] = 0.16, 0.32, and 0.64 mol L-1), the colloidal aggregates are larger (xi = 24 Angstrom) and exhibit a certain degree of spatial correlation between them. The pair correlation function corresponding to the sol with the highest concentration (0.92 mol L-1) reveals a rather strong short range order between aggregates, characteristic of a fluid-like structure, with an average nearest-neighbor distance between aggregates d(1) = 125 Angstrom and an average second-neighbor distance d(2) = 283 Angstrom. The pair distribution function remains essentially invariant during the sol-gel transition, suggesting that gelation involves the formation of a few points of connection between the aggregates resulting in a gel network constituted by essentially linear chains of clusters..
Resumo:
Titanium oxide is a good candidate as new support for hydrotreating (HDT) catalysts, but has the inconvenience of presenting small surface area and poor thermal stability. To overcome these handicaps TiO2-Al2O3 mixed oxides were proposed as catalyst support. Here, the results concerning the preparation, characterization and testing of molybdenum catalyst supported on titania-alumina are presented. The support was prepared by sol-gel route using titanium and aluminum isopropoxides, chelated with acetylacetone (acac) to promote similar hydrolysis ratio for both the alcoxides. The effect of nominal complexing ratios [acac]/[Ti] and of sol aging temperature on the structural features of nanometric particles was analyzed by quasi-elastic light scattering (QELS) and N-2 adsorption isotherm measurements. These characterizations have shown that the addition of acac and the increase of aging temperature favor the full dispersion of primary nanoparticles in mother acid solution. The dried powder presents a monomodal distribution of slit-shaped micropores, formed by irregular packing of platelet primary particles, surface area superior to 200 m(2) g(-1) and mean pore size of about 1 nm. These characteristics of porous texture are preserved after firing at 673 K. The diffraction patterns of sample fired above 973 K show only the presence of anatase crystalline phase. The crystalline structure of the support remained unaltered after molybdenum adsorption, but the surface area and the micropore volume were drastically reduced. (C) 2002 Published by Elsevier B.V. B.V.
Resumo:
Transparent thin films of nanocrystalline anatase were obtained by dip-coating process using an ethanolic suspension of redispersed nanoparticles. This suspension was prepared by sol-gel route and their redispersability achieved by surface grafting of para-toluene-sulfonic acid and acetylacetone. The effects of the acetylacetone content on the powder redispersibility and on the structural evolution of films were determined by small angle X-ray scattering, X-ray reflectometry and X-ray diffraction for different firing temperatures. The results demonstrated that the porous structure of the studied films consist of agglomerates of primary particles with two levels of porosity. The control of the amount of capping ligand allows for a fine-tuning of the average pore size of the dried films. Upon increasing the firing temperature up to 500 degrees C, progressive increase in apparent density, average pore size of films and average crystallite size of powders were observed. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Structural, optical, electro and photoelectrochemical properties of amorphous and crystalline sol-gel Nb2O5 coatings have been determined. The coatings are n-type semiconductor with indirect allowed transition and present an overall low quantum efficiency (phi < 4%) for UV light to electric conversion. The photoconducting behavior of the coatings is discussed within the framework of the Gartner and Sodergren models. Improvement can be foreseen if Nb2O5 coatings can be made of 10-20 nm size nanoparticles.
Resumo:
This work presents a new route of preparation of zirconium ceramic foams based on the thermostimulated sol-gel process. This method produces gelled bodies with up to 90% of porosity in the wet gel and can be used to make complex-shaped components. Unfortunately, the shrinkage during the drying step allows to a catastrophic reduction (50%) of the foam porosity. To improve the foam stability we carried out a systematic study of the effect of gel foam aging on the drying process. Samples were aged in closed vessel at 25 C during different time period (from 6 to 240 h). The shrinkage and the mass loss during drying at 50 C were measured in situ, using a non-contact technique performed with a special apparatus. The results show that the total linear shrinkage decreases from 46% to 8% as the aging period increase from 6 to 240 h. This behavior is followed by a small change of total mass loss, from 42 to 54%. It indicates that by aging the structural stiffness of the foams increases due to secondary condensation reactions. Thus, by controlling the aging period, the porosity can be increased from 67 to 75% and the average size of mesopores of dried foams can be screened from 0.3 to 0.9 mum. Finally, these results demonstrate that the thermostimulated sol-gel transition provides a potential route to ceramic foams manufacture.
Resumo:
In this paper we describe the production of zirconia-based foams by a novel thermostimulated sol-gel route, that employs the foaming of colloidal suspensions prior to the sol-gel transition promoted by small increase of temperature (congruent to3 degreesC). This method produces gelled bodies having porosity >70% in the wet stage, and can be used to produce complex-shaped components. The effect of a foaming agent (Freon11 or CCl3F) and surfactant content on the formation and stability of the foams was analyzed. The rheologic measurements demonstrate that by increasing the surfactant concentration, the gelation time decreases increasing foam stability. As the surfactant concentration and quantity of foaming agent increase, the density decreases and the porosity increases. Hg porosimetry results show that the dry foam presents a bimodal pore size distribution. The family of sub-micrometer pores was attributed to the formation of a microemulsion between Freon11 and water. Scanning electron microscopy analysis shows that the foam structure consists of a three-dimensional network of spherical pores, which may be open and interconnected or closed, at larger or smaller porosities, respectively. Finally these results show that the thermostimulated sol-gel transition provides a potential route for ceramic foam manufacture. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Tin dioxide (SnO2) thin film photoconductivity spectra were measured for a large temperature range using a deuterium source, the intensity of photocurrent spectra in the range 200-400 nm is temperature dependent, and the photocurrent increases in the ultraviolet even for illumination with photon energies much higher than the bandgap transition. This behavior is related to recombination of photogenerated electron-hole pairs with oxygen adsorbed at grain boundaries, which is consistent with nanoscopic crystallite size of sol-gel deposited films. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Titanium oxide (TiO2) is a good candidate for support of hydrotreating catalysts but has the disadvantage of presenting a low surface area and a poor thermal stability when compared with Al2O3. A mixed TiO2-Al2O3 support was proposed as an alternative that is expected to be free from these drawbacks. The variation during firing of the nanoporous texture of supports composed of TiO2-Al2O3, TiO2 and Al2O3 was studied by small angle X-ray scattering (SAXS). The supports were prepared by the sol-gel route using Ti and Al isopropoxides. We have particularly analyzed the effects of acid and basic hydrolysis on the nanostructural features of catalyst supports fired at different temperatures. The nanopore radius distribution functions were determined from SAXS results assuming a simple model of spherical nanopores embedded in a homogeneous solid matrix. The modal pore radius in both pure TiO2 and pure Al2O3 supports grows from 1.3 to 2.2 nm as the firing temperature increases from 673 to 973 K. on the other hand, the modal pore radius in the mixed TiO2-Al2O3 support remains below 1.2 nm over the same range of firing temperatures. These results demonstrate the good thermal stability of the nanoporous texture of mixed TiO2-Al2O3 supports.
Resumo:
This work describes the chemical modification by Tiron(R) molecules of the surface of SnO2 nanoparticles used to prepare nanoporous membranes. Samples prepared with Tiron(R) content between 1 and 20 wt% and fired at 400 C were characterised by X-Ray Powder Diffraction (XRPD), Extended X-ray Absorption Fine Structure (EXAFS), N-2 adsorption isotherms analysis and permeation experiments. XRPD and EXAFS results show a continuous reduction of crystallite size by increasing the Tiron(R) contents until 7.5 wt%. The control exercised by Tiron(R) modifying agent in crystallite growth allows the fine tuning of the average pore size that can be screened from 0.4 to 4 nm as the amount of grafted molecules decreases from 10 to 0 wt%. In consequence, the membrane cut-off can be screened from 1500 to 3500 g.mol(-1).
Resumo:
We have pointed Out that. zinc-based particles obtained from zinc acetate sol-gel route is a mixture of quantum-sized ZnO nanoparticles, zinc acetate, and zinc hydroxide double salt (Zn-HDS). Aiming the knowledge of the mechanisms involved in the formation of ZnO and Zn-HDS phases, the thermohydrolysis of ethanolic zinc acetate solutions induced by lithium hydroxide ([LiOH]/[Zn2+] = 0.1) or water ([H2O]/[Zn2+] = 0.05) addition was investigated at different isothermal temperatures (40, 50, 60 and 70 degrees C) by in situ measurements of turbidity, UV-vis absorption spectra and extended X-ray absorption fine structures (EXAFS). Only the growth of ZnO nanoparticles was observed in sol prepared with LiOH, while a two-step process was observed in that prepared with water addition, leading the fast growth of Zn-HDS and the formation of ZnO nanoparticles at advanced stage. A mechanism of dissolution/reprecipitation governed by the water/ethanol proportion is proposed to account for relative amount of ZnO. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Porphyrin was incorporated in a silicate network, via a covalent bond, by grafting a functional group with 3-aminopropyltriethoxysilane, using a sol-gel process. We have carried out the synthesis and measured the absorption spectra, nuclear magnetic resonance spectra, infrared (IR) spectra, luminescence spectra and lifetime of these hybrid silicates, porphyrinosilicas. These samples contained the following free-base porphyrins: meso-tetrakis-p-chlorobenzoylporphyrin, meso-tetrakis-2,6-dichloro-3-chlorosulfonylphenylporphyrin. The obtained porphyrinosilicas have similar absorption and luminescence spectra to the free base porphyrins in solution. IR spectra confirm the formation of monomeric species. Lifetime measurement for porphyrinosilica reveals that 32% +/- 2% of porphyrin is covalently bonded to the silica network. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
Electro-optical properties of sol-gel derived 2 mol% antimony or niobium doped tin dioxide films have been measured. The electron density has been calculated considering all the relevant scattering mechanisms and experimental conductivity data measured in the range -197 to 25 degrees C. The results support the hypothesis that both ionised impurity scattering and grain boundary scattering have comparable effects in the resistivity of coatings, for free electron density congruent to 5 x 10(18) cm(-3). We have measured variation of photoconductivity excitation with wavelength using xenon and deuterium lamp as light sources. Results show that the main band in the photoconductivity spectrum is dependent on the spectral light source emission, the excitation peak reaching 5 eV (deuterium lamp). This band is due to the recombination process involving oxygen species and photogenerated electron-hole pairs. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
This work describes the synthesis of a first-generation iron porphyrin catalyst entrapped in a silica matrix by the sol-gel route, leading to spherical particles. The catalyst was synthesized by the method of Stober, through hydrolysis and condensation of the alkoxysilane TEOS in a mixture of alcohol, water and ammonia, in the presence of the iron porphyrin Fe(TPP)Cl. The relation between particle morphology and catalytic activity of the different Fe(TPP)-SiO2, obtained using different H2O/silane molar ratios and ammonia concentrations in the xerogel syntheses, was studied.The obtained catalysts were characterized by UV-vis spectroscopy, NMR Si-29. thermogravimetric analysis and transmission electron microscopy. Their ability to catalyze (Z)-cyclooctene epoxidation and cyclohexane oxidation was tested using iodosylbenzene as oxygen donor; the oxidation products were analyzed by gas chromatography and the catalysts obtained in a form of particles spherical and monodispersed showed to be a promising catalytic system for selective oxidation. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The surface properties of SnO2 nanoparticles were modified by grafting ionic (Tiron (R). (OH)(2)C6H2(SO3Na)(2)(H2O)-H-.) or non-ionic (Catechol (R). C6H4-1,2-(OH)(2)) capping Molecules during aqueous sol-gel processing to improve the redispersibility of powdered xerogel. The effect of the amount of grafted organic molecules on the redispersibility of powders in aqueous solution at several basic pH values was Studied. The nanostructural features of the colloidal suspensions were analyzed by small angle X-ray scattering (SAXS) measurements. Irrespective of the nature and amount of grafted molecules, complete redispersion was obtained in aqueous solution at pH = 13. The redispersion at pH = 11 results in a mixture of dispersed primary particles and aggregates. The proportion of well dispersed nanoparticles and aggregates (and their average size) can be tuned by the quantity of grafted ionic molecules.
Resumo:
Yttrium-aluminum oxides are interesting compounds and they have been extensively used as host for lasers and phosphors, due to their stable physical and chemical properties. The fabrication of yttrium-aluminum garnet (YAG) has been investigated thoroughly. Single-crystal YAG is expensive and to produce it a new way has been investigated. This process consists of modifying the methodology of reagents mixture and the process of heating them. The microwave irradiation is used to heat-treat the oxide mixture. The traditional synthesis of YAG powders occurs through the reaction of aluminum and yttrium powders at high temperatures. With this work we investigated the preparation of YAG by non-hydrolytic sol-gel route as an alternative methodology to obtain yttrium-aluminum matrix from inorganic precursors (yttrium and aluminum chloride). The preparation of the gel was carried out in an oven-dried glassware. The AlCl3, YCl3 and ethanol were reacted in reflux under argon atmosphere. Europium III chloride was added as a structural probe. The powder was dried and heat-treated in modified microwaves. The samples were pre-treated at 50 and 800 C during I h and then heated in microwaves for 30 s, 2 and 4 min. The formation process and structure of the powders were studied by means of X-ray diffraction (XRD), photoluminescence (PL) and transmission electronic microscopy (TEM). XRD presents only picks corresponding to the YAG phase and confirmed by TEM. PL date showed that the YAG phase was formed in 2 min with the samples pre-treated at 50 C. For the samples pretreated at 800 degrees C, the YAG phase appears in 30s. The excitation spectra present a maximum of 394 nm corresponding to the L-5(6) level and emission spectra of Eu III ion present bands characteristic transitions arising from the D-5(0) -> F-7(J) (J= 1, 2, 3, 4) monifolds excited at their maximum. The magnetic dipole D-5(0) -> F-7(1) transition presents more intensity than the electric dipole D-5(0) -> F-7(2) transition. This methodology showed efficiency in obtaining YAG phase. (c) 2006 Elsevier B.V. All rights reserved.