932 resultados para Sélection in vivo
Resumo:
The oxidation of LDLs is considered a key step in the development of atherosclerosis. How LDL oxidation contributes to atherosclerosis remains poorly defined. Here we report that oxidized and glycated LDL (HOG-LDL) causes aberrant endoplasmic reticulum (ER) stress and that the AMP-activated protein kinase (AMPK) suppressed HOG-LDL-triggered ER stress in vivo.
Resumo:
It has been suggested that low-density lipoprotein (LDL) modified by glycation may be more susceptible to oxidation and thus, enhance its atherogenicity. Using affinity chromatography, LDL glycated in vivo (G-LDL) and relatively nonglycated. (N-LDL) subfractions can be isolated from the same individual. The extent of and susceptibility to oxidation of N-LDL compared with G-LDL was determined in 15 type 1 diabetic patients. Total LDL was isolated and separated by boronate affinity chromatography into relatively glycated (G-) and nonglycated (N-) subfractions. The extent of glycation, glycoxidation, and lipoxidation, lipid soluble antioxidant content, susceptibility to in vitro oxidation, and nuclear magnetic resonance (NMR)-determined particle size and subclass distribution were determined for each subfraction. Glycation, (fructose-lysine) was higher in G-LDL versus N-LDL, (0.28 +/- 0.08 v 0.13 +/- 0.04 mmol/mol lysine, P <.0001). However, levels of glycoxidation/lipoxidation products and of antioxidants were similar or lower in G-LDL compared with N-LDL and were inversely correlated with fructose-lysine (FL) concentrations in G-LDL, but positively correlated in N-LDL. In vitro LDL (CuCl2) oxidation demonstrated a longer lag time for oxidation of G-LDL than N-LDL (50 +/- 0.16 v 37 +/- 0.15 min, P <.01), but there was no difference in the rate or extent of lipid oxidation, nor in any aspect of protein oxidation. Mean LDL particle size and subclass distribution did not differ between G-LDL and N-LDL. Thus, G-LDL from well-controlled type 1 diabetic patients is not more modified by oxidation, more susceptible to oxidation, or smaller than relatively N-LDL, suggesting alternative factors may contribute to the atherogenicity of LDL from type 1 diabetic patients.
Resumo:
Chemical, nonenzymatic modification of protein and lipids by reducing sugars, such as glucose, is thought to contribute to age-related deterioration in tissue protein and cellular membranes and to the pathogenesis of diabetic complications. This report describes the synthesis and quantification of N-(glucitol)ethanolamine (GE) and N-(carboxymethyl)serine (CMS), two products of nonenzymatic modification of aminophospholipids. GE is the product of reduction and hydrolysis of glycated phosphatidylethanolamine (PE), while CMS is formed through reaction of phosphatidylserine (PS) with products of oxidation of either carbohydrate (glycoxidation) or lipids (lipoxidation). Gas chromatography/mass spectrometry procedures for quantification of the N,O-acetyl methyl ester derivatives of the modified head groups were developed. GE and CMS were quantified in samples of PE and PS, respectively, following incubation with glucose in vitro; CMS formation was dependent on the presence of oxygen during the incubation. Both GE and CMS were detected and quantified in lipid extracts of human red blood cell membranes. The content of GE, but not CMS, was increased in the lipids from diabetic compared to nondiabetic subjects. Measurement of these modified lipids should prove useful for assessing the role of carbonyl-amine reactions of aminophospholipids in aging and age-related diseases.
Resumo:
Nepsilon-(Carboxymethyl)lysine (CML) is a stable chemical modification of proteins formed from both carbohydrates and lipids during autoxidation reactions. We hypothesized that carboxymethyl lipids such as (carboxymethyl)phosphatidylethanolamine (carboxymethyl-PE) would also be formed in these reactions, and we therefore developed a gas chromatography-mass spectrometry assay for quantification of carboxymethylethanolamine (CME) following hydrolysis of phospholipids. In vitro, CME was formed during glycation of dioleoyl-PE under air and from linoleoylpalmitoyl-PE, but not from dioleoyl-PE, in the absence of glucose. In vivo, CME was detected in lipid extracts of red blood cell membranes, approximately 0.14 mmol of CME/mol of ethanolamine, from control and diabetic subjects, (n = 22, p > 0.5). Levels of CML in erythrocyte membrane proteins were approximately 0.2 mmol/mol of lysine for both control and diabetic subjects (p > 0.5). For this group of diabetic subjects there was no indication of increased oxidative modification of either lipid or protein components of red cell membranes. CME was also detected in fasting urine at 2-3 nmol/mg of creatinine in control and diabetic subjects (p = 0.085). CME inhibited detection of advanced glycation end product (AGE)-modified protein in a competitive enzyme-linked immunosorbent assay using an anti-AGE antibody previously shown to recognize CML, suggesting that carboxymethyl-PE may be a component of AGE lipids detected in AGE low density lipoprotein. Measurement of levels of CME in blood, tissues, and urine should be useful for assessing oxidative damage to membrane lipids during aging and in disease.
Resumo:
The Maillard or browning reaction between reducing sugars and protein contributes to the chemical deterioration and loss of nutritional value of proteins during food processing and storage. This article presents and discusses evidence that the Maillard reaction is also involved in the chemical aging of long-lived proteins in human tissues. While the concentration of the Amadori adduct of glucose to lens protein and skin collagen is relatively constant with age, products of sequential glycation and oxidation of protein, termed glycoxidation products, accumulate in these long-lived proteins with advancing age and at an accelerated rate in diabetes. Among these products are the chemically modified amino acids, N epsilon-(carboxymethyl)lysine (CML), N epsilon-(carboxymethyl)hydroxylysine (CMhL), and the fluorescent crosslink, pentosidine. While these glycoxidation products are present at only trace levels in tissue proteins, there is strong evidence for the presence of other browning products which remain to be characterized. Mechanisms for detoxifying reactive intermediates in the Maillard reaction and catabolism of extensively browned proteins are also discussed, along with recent approaches for therapeutic modulation of advanced stages of the Maillard reaction.
Resumo:
The hepatic microcirculation is believed to cause variable cellular oxygenation within the organ. In this study a marker of cellular hypoxia was used to demonstrate liver oxygen tension gradients in vivo. Covalent binding of misonidazole adducts to cellular macromolecules is enhanced by hypoxia. Autoradiographs of liver from mice treated with radiolabeled misonidazole demonstrated enhanced binding of adducts within hepatocytes surrounding hepatic veins. Livers from both hypoxic and normal mice had characteristic autoradiographic grain patterns reflecting regional oxygen tension variation in vivo. Differential binding of misonidazole adducts formed in hypoxic cells could have an application in studies of liver physiology and biochemistry.
Resumo:
Aim: Investigate RPE resurfacing by changes in fundus autofluorescence (AF) in patients with retinal pigment epithelial (RPE) tears secondary to age-related macular degeneration (AMD).
Methods: A retrospective case series of patients presenting with RPE tears from 1 March 2008 to 1 April 2011. The pattern and area of AF signal distribution in RPE tears were evaluated. The change in the size of the area of debrided RPE over the follow-up period was used as the main outcome measure. A reduction in this area was termed “RPE resurfacing”, and an enlargement termed “progression of RPE cell loss”.
Results; Thirteen patients (14 eyes) with RPE tears (mean age 82 years) were included in this study. The mean baseline area of reduced AF signal was 4.1 mm2 (range 0.33–14.9, median 0.29). “Resurfacing” of the RPE occurred in ten eyes and “progression of RPE cell loss” in four eyes after a median follow-up of 11.5 months (range, 1–39). The mean area of healing was 2.0 mm2, and progression was 1.78 mm2.
Conclusion: A consistent AF pattern was observed in patients with RPE tears. RPE resurfacing over the area of the RPE tear occurred, to a varying degree, in the majority of the cases.
Resumo:
The particular microenvironment of the skeletal muscle can be the site of complex immune reactions. Toll-like receptors (TLRs) mediate inflammatory stimuli from pathogens and endogenous danger signals and link the innate and adaptive immune system. We investigated innate immune responses in human muscle. Analyzing TLR1-9 mRNA in cultured myoblasts and rhabdomyosarcoma cells, we found constitutive expression of TLR3. The TLR3 ligand Poly (I:C), a synthetic analog of dsRNA, and IFN-gamma increased TLR3 levels. TLR3 was mainly localized intracellularly and regulated at the protein level. Poly (I:C) challenge 1) activated nuclear factor-kappaB (NF-kappaB), 2) increased IL-8 release, and 3) up-regulated NKG2D ligands and NK-cell-mediated lysis of muscle cells. We examined muscle biopsy specimens of 6 HIV patients with inclusion body myositis/polymyositis (IBM/PM), 7 cases of sporadic IBM and 9 nonmyopathic controls for TLR3 expression. TLR3 mRNA levels were elevated in biopsy specimens from patients with IBM and HIV-myopathies. Muscle fibers in inflammatory myopathies expressed TLR3 in close proximity of infiltrating mononuclear cells. Taken together, our study suggests an important role of TLR3 in the immunobiology of muscle, and has substantial implications for the understanding of the pathogenesis of inflammatory myopathies or therapeutic interventions like vaccinations or gene transfer.
Resumo:
Background: Schistosomiasis is a parasitic disease caused by trematodes of the genus Schistosoma. Five species of Schistosoma are known to infect humans, out of which S. haematobium is the most prevalent, causing the chronic parasitic disease schistosomiasis that still represents a major problem of public health in many regions of the world and especially in tropical areas, leading to serious manifestations and mortality in developing countries. Since the 1970s, praziquantel (PZQ) is the drug of choice for the treatment of schistosomiasis, but concerns about relying on a single drug to treat millions of people, and the potential appearance of drug resistance, make identification of alternative schistosomiasis chemotherapies a high priority. Alkylphospholipid analogs (APLs), together with their prototypic molecule edelfosine (EDLF), are a family of synthetic antineoplastic compounds that show additional pharmacological actions, including antiparasitic activities against several protozoan parasites.
Methodology/Principal Findings: We found APLs ranked edelfosine> perifosine> erucylphosphocholine> miltefosine for their in vitro schistosomicidal activity against adult S. mansoni worms. Edelfosine accumulated mainly in the worm tegument, and led to tegumental alterations, membrane permeabilization, motility impairment, blockade of male-female pairing as well as induction of apoptosis-like processes in cells in the close vicinity to the tegument. Edelfosine oral treatment also showed in vivo schistosomicidal activity and decreased significantly the egg burden in the liver, a key event in schistosomiasis.
Conclusions/Significance: Our data show that edelfosine is the most potent APL in killing S. mansoni adult worms in vitro. Edelfosine schistosomicidal activity seems to depend on its action on the tegumental structure, leading to tegumental damage, membrane permeabilization and apoptosis-like cell death. Oral administration of edelfosine diminished worm and egg burdens in S. mansoni-infected CD1 mice. Here we report that edelfosine showed promising antischistosomal properties in vitro and in vivo.
Resumo:
Purpose: To determine differences in overall tumor responses measured by volumetric assessment and bioluminescence imaging (BLI) following exposure to uniform and non-uniform radiation fields in an ectopic prostate tumor model.
Materials and methods: Bioluminescent human prostate tumor xenografts were established by subcutaneous implantation into male mice. Tumors were irradiated with uniform or non-uniform field configurations using conventional in vivo irradiation procedures performed using a 225 kVp generator with custom lead shielding. Tumor responses were measured using Vernier calipers and by BLI using an in vivo imaging system. Survival was defined as the time to quadroupling of pre-treatment tumor volume.
Results: The correlation between BLI and tumor volume measurements was found to be different for un-irradiated (R = 0.61), uniformly irradiated (R = 0.34) and partially irradiated (R = 0.30) tumors. Uniformly irradiated tumors resulted in an average tumor growth delay of 60 days with median survival of 75 days, compared to partially irradiated tumors which showed an average growth delay of 24 days and median survival of 38 days.
Conclusions: Correlation between BLI and tumor volume measurements is lower for partially irradiated tumors than those exposed to uniform dose distributions. The response of partially irradiated tumors suggests non-uniformity in response beyond physical dose distribution within the target volume. Dosimetric uncertainty associated with conventional in vivo irradiation procedures prohibits their ability to accurately determine tumor response to non-uniform radiation fields and stresses the need for image guided small animal radiation research platforms.
Resumo:
This study describes the preclinical development of a matrix-type silicone elastomer vaginal ring device designed to provide controlled release of UC781, a non-nucleoside re- verse transcriptase inhibitor. Testing of both human- and macaque-sized rings in a sink condition in vitro release model demonstrated continuous UC781 release in quantities consid- ered sufficient to maintain vaginal fluid concentrations at levels 82–860-fold higher than the in vitro IC50 (2.0 to 10.4 nM) and therefore potentially protect against mucosal trans- mission of HIV. The 100-mg UC781 rings were well tolerated in pig-tailed macaques, did not induce local inflammation as determined by cytokine analysis and maintained median con- centrations in vaginal fluids of UC781 in the range of 0.27 to 5.18 mM during the course of the 28-day study. Analysis of residual UC781 content in rings after completion of both the in vitro release and macaque pharmacokinetic studies revealed that 57 and 5 mg of UC781 was released, respectively. The pharmacokinetic analysis of a 100-mg UC781 vaginal ring in pig-tailed macaques showed poor in vivo–in vitro correlation, attributed to the very poor solubility of UC781 in vaginal fluid and resulting in a dissolution-controlled drug release mecha- nism rather than the expected diffusion-controlled mechanism.
Resumo:
Nanoparticles offer alternative options in cancer therapy both as drug delivery carriers and as direct therapeutic agents for cancer cell inactivation. More recently, gold nanoparticles (AuNPs) have emerged as promising radiosensitizers achieving significantly elevated radiation dose enhancement factors when irradiated with both kilo-electron-volt and mega-electronvolt X-rays. Use of AuNPs in radiobiology is now being intensely driven by the desire to achieve precise energy deposition in tumours. As a consequence, there is a growing demand for efficient and simple techniques for detection, imaging and characterization of AuNPs in both biological and tumour samples. Spatially accurate imaging on the nanoscale poses a serious challenge requiring high- or super-resolution imaging techniques. In this mini review, we discuss the challenges in using AuNPs as radiosensitizers as well as various current and novel imaging techniques designed to validate the uptake, distribution and localization in mammalian cells. In our own work, we have used multiphoton excited plasmon resonance imaging to map the AuNP intracellular distribution. The benefits and limitations of this approach will also be discussed in some detail. In some cases, the same "excitation" mechanism as is used in an imaging modality can be harnessed tomake it also a part of therapymodality (e.g. phototherapy)-such examples are discussed in passing as extensions to the imaging modality concerned.